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Results

We disprove a conjecture of Schaefer and Štefankovič [10] from
GD 2013 about the extension of the Hanani-Tutte theorem to arbi-
trary orientable surfaces.

Theorem 1 There exists a graph G that has a drawing in the
compact orientable surfaces S with 4 handles in which every
pair of non-adjacent edges cross an even number of times, but
G cannot be embedded in S.

By taking a disjoint union of G with pairwise disjoint copies of K5
we obtain a counterexample on an orientable surface of arbitrary
genus bigger than 4.
In order to prove the theorem we first give a counterexample to the
unified variant (see below) on the torus. Only part 1) is actually
needed to prove Theorem 1, but 2) provides a good evidence for
why the counterexample works.

Theorem 2 The following holds.
1)The complete bipartite graph K3,4 has a drawing D on the
torus with every pair of non-adjacent edges crossing an even
number of times, such that for the set W of four vertices in
one part every pair of edges with a common endpoint in W
crosses an even number of times.

2)There is no embedding E of K3,4 on the torus with the same
cyclic orders of edges at the vertices of W as in D.

Introduction

The Hanani–Tutte theorem [5, 11] is a classical result that provides
an algebraic characterization of planarity with interesting theoretical
and algorithmic consequences, such as a simple polynomial algorithm
for planarity testing [9]. The theorem has several variants, the strong
and the weak variant are the two most well-known. The notion “the
Hanani–Tutte theorem” refers to the strong variant.

The (strong) Hanani–Tutte theorem [5, 11]

A graph is planar if it can be drawn in the plane so that no pair of
non-adjacent edges crosses an odd number of times.

The weak Hanani–Tutte theorem [1, 6, 8]

If a graph G has a drawing D on a compact surface S where every
pair of edges crosses an even number of times, then G has an em-
bedding on S that preserves the cyclic order of edges at each vertex
of D.

Recently a common generalization of both the strong and the weak
variant in the plane has been discovered.

Unified Hanani–Tutte theorem [3, 8]

Let G be a graph and let W be a subset of vertices of G. Let D be
a drawing of G where every pair of edges that are independent or
have a common endpoint in W cross an even number of times. Then
G has a planar embedding where cyclic orders of edges at vertices
from W are the same as in D.

The variant of the strong Hanani–Tutte theorem holds for the projective
plane. The result was first proved by Pelsmajer, Schaefer and Stasi [7]
using the set of minor minimal obstructions to the embeddability of
graphs on the projective plane. A direct proof [2] by de Verdière et al.
was presented at GD 2016.

The (strong) Hanani–Tutte theorem on the
projective plane [2, 7]

If a graph G can be drawn on the projective plane so that no pair
of non-adjacent edges crosses an odd number of times, then G can
be embedded on the projective plane.
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Proof of Theorem 2

•We give the drawing D of K3,4 on the torus as specified in 1) of
Theorem 2.

Figure 1: 2-dimensional model of the toroidal drawing D of K3,4 in which every pair
of non-adjacent edges cross an even number of times. Vertices in W are drawn as
empty circles. The torus is obtained by identifying the opposite sides of the square
as indicated by the arrows.

Figure 2: The actual toroidal drawing D of K3,4 from the previous figure realized in
the Euclidean 3-space.

•We observe that the counterclockwise cyclic order of the edges
around every vertex in W is red, green and blue, which implies
that there are no 4-faces in the embedding E from 2) of Theorem 2.

•However, no toroidal embedding of K3,4 can have all the faces of size
at least 6. Indeed, E has at least 5 faces by Euler’s formula
f ≥ e− n = 12− 7 = 5, and by double-counting the edges we
obtain 6f ≤ 2e, which yields 30 = 6 · 5 ≤ 2 · 12 = 24 (contradiction).

Proof of Theorem 1

•The graph G is obtained by combining three disjoint copies of K1,4
with a sufficiently large grid by appropriately identifying degree-1
vertices in the three copies of K1,4 with vertices in the grid.

•We give a drawing of the graph G on the orientable surface S of
genus 4 in which every pair of non-adjacent edges cross an even
number of times. The graph looks like the one in the figure except
that the grid is much larger in the actual graph G in comparison
with the figure.
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Figure 3: A drawing of G on S, in which every pair of non-adjacent edges cross
an even number of times. We drill 4 holes around the vertices of W in D. The
drawing is obtained by gluing together along boundaries the obtained torus with 4
holes containing the rest of the drawing D and an embedding of a large grid on a
sphere with 4 holes, where the boundaries of the holes are formed by 4-cycles.

•By Lemma 4 from [4], if the grid in G is sufficiently large we can
choose a part of the grid embedded in a planar way and then use the
hypothetical embedding of G to embed K4,5 as indicated in the
figure.

Proof of Theorem 1 (cont’)

Figure 4: The surface S of genus 4 obtained after identifying the boundaries of the 4
holes on the torus with those on the sphere.
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Figure 5: A partial embedding of K4,5 on the surface S of genus 4 drawn by bold
polygonal segments. The vertices drawn as empty discs form one part of the vertex set
of K4,5. The dotted edges cannot be extended without creating an edge crossing.

•We observe that the counterclockwise cyclic order of the edges
around every vertex in the smaller part is brown, purple, green,
red and blue, which implies that all the faces in such an
embedding of K4,5 must be at least 10-faces.

•No embedding on S of K4,5 can have all the faces of size at least 10.
Indeed, by Euler’s formula for the number of faces f we have
f ≥ e− n− 6 = 20− 9− 6 = 5, and by double-counting the edges
we obtain 10f ≤ 2e, which yields 50 = 10 · 5 ≤ 2 · 20 = 40
(contradiction).
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