Towards Characterizing Strict Outerconfluent Graphs

Fabian Klute • Martin Nöllenburg

Given graph $G=(V, E)$, we search a confluent drawing D s.t.:
merge for blue vertex

Vertices $v \in V$ are mapped to points | Edges $(u, v) \in E$ are mapped to smooth |
| :--- |
| curves between vertices |
| A poth consists of arcs and junction |
| points connecting them |

A drawing D is strict if there is exactly
one smooth curve per edge $(u, v) \in E$
D is outerconfluent if all vertices are
adjacent to the outer face

split for blue vertex

Forbidden Orders

These two orders have no SOC drawing, although represented:
Alternating $K_{3,3}$

Bipartite domino

SOC \subset outer-string

Construct a tree of junctions with respect to one vertex Build a string for every node in the drawing Construct a string representation from individual strings

Results at a Glance
 polyson-icircle \longrightarrow outer-string
 pseudo-split.
 alternation \longrightarrow strict-outerconfluent
 comparability circles distance-heridarity
 bipartite-permutation
 bipartite permutation \cap domino-free bipartite strict-outerconfluent
 $\substack{\text { Known } \\ \longrightarrow \subseteq \\ \longrightarrow \Varangle}$

Building one string

Traverse tree in left-first DFS order
Make clockwise U-turn at leaf and backtrack At split-junction

Coming from left subtree: cross arc and descend into right subtree
Coming from right subtree: cross arc and
backtrack to split-junction

Two graphs with no SOC drawing

We find a crossing, not represented in any circular order of the vertices

Bipartite SOC

Use Hui's algorithm [2] to get a bipartite outerconfluent drawing

Eliminate non-strict paths when possible

\Rightarrow bipartite-permutation \cap domino-free \subseteq SOC
Infer graph from bipartite SOC drawing This graph is a bipartite permutation graph ${ }_{[2]}$ Domino is not representable as bipartite SOC \Rightarrow domino-free
\Rightarrow Bipartite SOC \subseteq bipartite permutation graph n domino-free
$\frac{\text { pseudo-split } \ddagger \text { SOC }}{\text { split } w_{5} \text { into a clique and a } C_{5}}$
pseudo-split $\nsubseteq S$

pseudo-split \nsubseteq
pseudo-split \nsubseteq
\Rightarrow pseudo-split \nsubseteq SOC pseudo-split C polygon-circle
\Rightarrow polygon-circle $\not \subset$ SOC

The gray string now follows the red string in parallel

SOC \nsubseteq comparability \nsubseteq SOC

A graph is a comparability graph iff it has a transitive orientation
$B W_{3}$ has a transitive orientation Graph is among forbidden subgraphs of and is hence a comparability graph comparability graphs [4], but has SOC layout

\Rightarrow comparability \nsubseteq SOC

\Rightarrow SOC \nsubseteq comparability

Leaf
Make sure the red string intersects the brown one

Merge-Junction

The tree of the red node
 graph is no circle graph [3]

SOC \nsubseteq circle $\not \subset$ SOC

This graph is no circle graph, since it contains W_{5} as obstruction.

Take the local complement for the green vertices
If W_{5} can be found as induced subgraph after sequence of local complements the
graph is no circle graph [3]
But it has a SOC drawing Graph is circle graph, but no SOC drawing

Open Questions

The characterization of SOC graphs remains open Interesting questions:
Is every SOC graph an alternation/circle-polygon graph? Distance-Heridarity graphs have rankwidth 1 and are in SOC, what about rankwidth $2,3, \ldots$
Can we draw every permutation graph as SOC?
alternation \nsubseteq SOC
circle and comparability are
subclasses of alternation
circle \nsubseteq SOC, circle \subseteq alternation \Rightarrow alternation $\nsubseteq \mathbf{S O C}$
comp $\nsubseteq \mathbf{S O C}$, comp \subseteq alternation
\Rightarrow alternation \notin SOC
\Rightarrow SOC \nsubseteq circle

Graph Glossary

Comparability graph iff it has transitive orientation
Circle graph iff has intersection model of chords in a circle Permutation graph iff it has an intersection model of lines between two parallels
Outer-string graph iff has intersection model of curves in a circle with one endpoint on the circle
Polygon-circle iff is the intersection model of polygons inscribed in a circle
Alternation graph iff it has semi-transitive orientation
Pseudo-Split iff vertices can be partitioned into a complete graph, a C_{5} and an independent set. Complete graph adjacent to C_{5}, independent set not adjacent to C_{5}

