Towards Characterizing Strict Outerconfluent Graphs

Fabian Klute · Martin Nöllenburg

Definition ([1,5])

Given graph G = (V, E), we search a confluent drawing D s.t.:

merge for blue vertex

Vertices $v \in V$ are mapped to points Edges $(u, v) \in E$ are mapped to smooth curves between vertices A path consists of arcs and junction points connecting them

A drawing D is strict if there is exactly one smooth curve per edge $(u, v) \in E$ **D** is outerconfluent if all vertices are adjacent to the outer face

split for blue vertex

Represented Crossings

Draw graph as circular layout **Crossings determined by vertex order** Every crossing must be part of $K_{2,2}$

correct adjacencies

We find a crossing, not represented in any circular order of the vertices

Bipartite SOC

Use Hui's algorithm [2] to get a bipartite outerconfluent drawing

Forbidden Orders

These two orders have no SOC drawing, although represented:

SOC < **outer-string**

Construct a tree of junctions with respect to one vertex Build a string for every node in the drawing -**Construct a string representation from individual strings**

u and *v* incorrect

adjacencies

Building one string Traverse tree in left-first DFS order Make clockwise U-turn at leaf and backtrack At split-junction

Coming from left subtree: cross arc and descend into right subtree

Coming from right subtree: cross arc and backtrack to split-junction

The tree of the red node

Eliminate non-strict paths when possible

Only Domino graph can not be eliminated

 \Rightarrow bipartite-permutation \cap domino-free \subseteq SOC

Infer graph from bipartite SOC drawing This graph is a bipartite permutation graph [2] **Domino is not representable as bipartite SOC** \Rightarrow domino-free

 \Rightarrow Bipartite SOC \subseteq bipartite permutation graph ∩ domino-free

Split-Junction The red string first traverses the left tree, later the right tree Other strings can be crossed since they see this as merge-junction

Leaf Make sure the red string intersects the brown one

Merge-Junction The gray string now follows the red string in parallel

SOC & comparability & SOC

A graph is a comparability graph iff it has a transitive orientation

BW₃ has a transitive orientation Graph is among forbidden subgraphs of and is hence a comparability graph comparability graphs [4], but has SOC layout

SOC ⊈ circle ⊈ SOC

This graph is no circle graph, since it contains W_5 as obstruction.

Take the local complement for the green vertices

If W_5 can be found as induced subgraph after sequence of local complements the graph is no circle graph [3]

But it has a SOC drawing

 \blacksquare = split

 $\Lambda = merge$

Graph is circle graph, but no SOC drawing

Graph Glossary

 \Rightarrow pseudo-split $\not\subseteq$ SOC **pseudo-split** ⊂ **polygon-circle** \Rightarrow polygon-circle $\not\subseteq$ SOC

 \Rightarrow comparability $\not\subseteq$ SOC

 \bigcirc

\Rightarrow SOC $\not\subseteq$ comparability

Open Questions

The characterization of SOC graphs remains open

Interesting questions:

Is every SOC graph an alternation/circle-polygon graph? **Distance-Heridarity graphs have rankwidth 1 and are in** SOC, what about rankwidth 2,3,... Can we draw every permutation graph as SOC?

alternation **Z** SOC

circle and comparability are subclasses of alternation

circle $\not\subseteq$ SOC, circle \subseteq alternation \Rightarrow alternation $\not\subseteq$ SOC comp $\not\subseteq$ SOC, comp \subseteq alternation \Rightarrow alternation $\not\subseteq$ SOC

Comparability graph iff it has transitive orientation

Circle graph iff has intersection model of chords in a circle

Permutation graph iff it has an intersection model of lines between two parallels

Outer-string graph iff has intersection model of curves in a circle with one endpoint on the circle

Polygon-circle iff is the intersection model of polygons inscribed in a circle

Alternation graph iff it has semi-transitive orientation

Pseudo-Split iff vertices can be partitioned into a complete graph, a C_5 and an independent set. Complete graph adjacent to C_5 , independent set not adjacent to C_5

[1] Eppstein, D., Holten, D., Löffler, M., Nöllenburg, M., Speckmann, B., Verbeek, K.: Strict confluent drawing. Journal of Computational Geometry 7(1), 22–46 (2016) [2] Hui, P., Pelsmajer, M.J., Schaefer, M., Stefankovic, D.: Train tracks and confluent drawings. Algorithmica 47(4), 465–479 (2007) [3] A. Bouchet. Circle graph obstructions. Journal of Combinatorial Theory, Series B, 60(1):107–144, 1994. [4] T. Gallai. Transitiv orientierbare Graphen. Acta Mathematica Hungarica, 18(1-2):25-66, 1967. [5] M. Dickerson et al. Confluent drawings: visualizing non-planar diagrams in a planar way. In GD'03, volume 2912 of LNCS, pages 1–12. Springer, 2003.

