A Geometric Heuristic for Rectilinear Crossing Minimization

Marcel Radermacher • Klara Reichard • Ignaz Ritter • Dorothea Wagner

Problem Statement

Crossing minimization is an active field of research. While there is a lot of work on heuristics for topological drawings, these techniques are typically not transferable to the rectilinear setting. We introduce and evaluate three heuristics for rectilinear crossing minimization. The approaches are based on the primitive operation of moving a single vertex to its crossing-minimal position in the current drawing Γ. In an experimental evaluation, we demonstrate that our algorithms compute straight-line drawings with significantly fewer crossings than energy-based algorithms, though at the cost of a higher running time.

Heuristics

Let $\Gamma[v \mapsto p]$ be the drawing obtained from a drawing Γ where v is moved to p. A crossing-minimal position p^{\star} of v corresponds to a drawing $\Gamma\left[v \mapsto p^{\star}\right]$ with a minimum number of crossings.

Evaluation

current drawing

crossing-minima position of v

Vertex Movement (VM) Let $S=\left\langle v_{1}, v_{2}, \ldots, v_{k}\right\rangle, k \in \mathbb{N}$, be a sequence of perties of G and let Γ_{0} be an arbitrary straight-line drawing of G. The drawing Γ_{i} is obtained from Γ_{i-1} by moving vertex v_{i} to its crossing-minimal position.
\square Community

- Resembles community structure

100 randomly selected graphs per class

Running Time

The high running time is due to precise geometric operations

Number of Crossings

A point woresponds to the number of erossing of one drawing computed by the algorithm indicated by the color. The catagorization by graph classes shows that stress minimization has particular problems in optimizing the number of crossings in the graph class TriANGULATION $+X$. The plot suggests that edge insertion computes drawings with the smallest number of crossings. Our statistical test indeed confirms this observation with a significance level of $\alpha=0.05$
Conclusion: El has the lowest number of crossings but a high running time. If time is crucial, EP is the best choice.

Crossing-Minimal Position

Theorem Let $G=(V, E)$ be a graph with a degree- k vertex $v \in V$ and a straightline drawing Γ of G. A crossing-minimal position for v can be computed in $O\left((k n+m)^{2} \log (k n+m)\right)$ time

Edge Insertion We start with a maximal planar subgraph of G and iteratively reinsert edges e into the previous drawing. We modify each drawing so that we can add the edge e with a small number of crossings. We evaluated two strategies, (i) either only moving the endpoints of e (EP), or (ii) moving vardices incident to edges crossing e (El).

Vertex Insertion (VI) We identify a sequence $T=$ $\left\langle v_{1}, v_{2}, \ldots, v_{k}\right\rangle, k \leq n$, so that the induced subgraph G_{P} of $V \backslash V(T)$ is a planar subgraph of G. We iteratively emove the vertex with the highest crossing number from a drawing Γ of G until Γ is planar. We reinsert the verties in reverse order at their crossing-minimal positions.

