On the Edge-length Ratio of Outerplanar graphs

Sylvain Lazard ${ }^{1}$ William Lenhart ${ }^{2} \quad$ Giuseppe Liotta 3

${ }^{1}$ Inria, CNRS, U. Lorraine, France
${ }^{2}$ Computer Science Department, Williams College
${ }^{3}$ Dipartimento Ingegneria Elettronica e dell'Informazione, Universitá di Perugia

Outline

Motivation and Background

The Problem

Our Results

Some Highlights

Wrapping Up

Outline

Motivation and Background

The Problem

Our Results

Some Highlights

Wrapping Up

Drawing Aesthetics

Drawing Aesthetics

In Graph Drawing (1999), Di Battista, Eades, Tamassia, and Tollis identify 11 desirable drawing aesthetics, including

Drawing Aesthetics

In Graph Drawing (1999), Di Battista, Eades, Tamassia, and Tollis identify 11 desirable drawing aesthetics, including

- Maximum Edge Length

Drawing Aesthetics

In Graph Drawing (1999), Di Battista, Eades, Tamassia, and Tollis identify 11 desirable drawing aesthetics, including

- Maximum Edge Length
- Uniform Edge Length

Drawing Aesthetics

In Graph Drawing (1999), Di Battista, Eades, Tamassia, and Tollis identify 11 desirable drawing aesthetics, including

- Maximum Edge Length
- Uniform Edge Length

Efforts to produce drawings that reflect these two aesthetics have proven hard to come by

Prescribed Edge Lengths

Some NP-Hardness Results

Prescribed Edge Lengths

Some NP-Hardness Results

Eades and Wormald(1990)

Prescribed Edge Lengths

Some NP-Hardness Results

Eades and Wormald(1990)

- Does G admit a planar straight-line drawing (PSLD) with prescribed edge lengths?

Prescribed Edge Lengths

Some NP-Hardness Results

Eades and Wormald(1990)

- Does G admit a planar straight-line drawing (PSLD) with prescribed edge lengths?
- Does a 2-connected G admit a unit length PSLD?

Prescribed Edge Lengths

Some NP-Hardness Results

Eades and Wormald(1990)

- Does G admit a planar straight-line drawing (PSLD) with prescribed edge lengths?
- Does a 2-connected G admit a unit length PSLD?

Cabello, Demaine, and Rote (2007)
Does a 3-connected G admit a unit-length PSLD?

Prescribed Edge Lengths

Some NP-Hardness Results

Eades and Wormald(1990)

- Does G admit a planar straight-line drawing (PSLD) with prescribed edge lengths?
- Does a 2-connected G admit a unit length PSLD?

Cabello, Demaine, and Rote (2007)
Does a 3-connected G admit a unit-length PSLD?
Bhatt and Cosmadakis (1987)
Does a tree T with $\Delta(T) \leq 4$ admit a unit-length PSLD with vertices on integer grid points?

Relative Edge Lengths

Relative Edge Lengths

Aichholzer, Hoffmann, van Kreveld, and Rote (2014)
Characterize the graphs such that, for any total ordering of the edges, there is a PSLD such that the sorted edge lengths appear in the same order

Relative Edge Lengths

Aichholzer, Hoffmann, van Kreveld, and Rote (2014) Characterize the graphs such that, for any total ordering of the edges, there is a PSLD such that the sorted edge lengths appear in the same order
Eades and Wormald(1990)
Determining whether a 2-connected G has a PSLD with all edges having lengths within ϵ of 1 is NP-Hard

Relative Edge Lengths

Aichholzer, Hoffmann, van Kreveld, and Rote (2014)
Characterize the graphs such that, for any total ordering of the edges, there is a PSLD such that the sorted edge lengths appear in the same order

Eades and Wormald(1990)
Determining whether a 2-connected G has a PSLD with all edges having lengths within ϵ of 1 is NP-Hard

Hoffmann, van Kreveld, Kusters, and Rote (2014)
Construct a family of embedded planar graphs having unbounded edge-length ratio

Outline

Motivation and Background

The Problem

Our Results

Some Highlights

Wrapping Up

Edge-Length Ratio of a Drawing

Definition

The edge-length-ratio $\rho(\Gamma)$ of a drawing Γ of a graph G is the ratio of the lengths of the longest to the shortest edge in Γ

Edge-Length Ratio of a Drawing

Definition

The edge-length-ratio $\rho(\Gamma)$ of a drawing Γ of a graph G is the ratio of the lengths of the longest to the shortest edge in Γ

$$
\rho\left(\Gamma_{1}\right)>6
$$

Edge-Length Ratio of a Drawing

Definition

The edge-length-ratio $\rho(\Gamma)$ of a drawing Γ of a graph G is the ratio of the lengths of the longest to the shortest edge in Γ

$$
\rho\left(\Gamma_{1}\right)>6
$$

$\rho\left(\Gamma_{2}\right)<2$

Edge-Length Ratio of a Planar Embedding

Definition

The edge-length-ratio $\rho(\mathcal{G})$ of a planar embedding \mathcal{G} of a graph G is the infimum of $\rho(\Gamma)$ over all embedding-preserving planar straight-line drawings Γ of \mathcal{G}

Edge-Length Ratio of a Planar Embedding

Definition
The edge-length-ratio $\rho(\mathcal{G})$ of a planar embedding \mathcal{G} of a graph G is the infimum of $\rho(\Gamma)$ over all embedding-preserving planar straight-line drawings Γ of \mathcal{G}

A planar embedding \mathcal{G}

Edge-Length Ratio of a Planar Embedding

Definition
The edge-length-ratio $\rho(\mathcal{G})$ of a planar embedding \mathcal{G} of a graph G is the infimum of $\rho(\Gamma)$ over all embedding-preserving planar straight-line drawings Γ of \mathcal{G}

Edge-Length Ratio of a Planar Graph

Definition

The edge-length-ratio $\rho(G)$ of a planar graph G is the infimum of $\rho(\Gamma)$ over all planar straight-line drawings Γ of G

Edge-Length Ratio of a Planar Graph

Definition

The edge-length-ratio $\rho(G)$ of a planar graph G is the infimum of $\rho(\Gamma)$ over all planar straight-line drawings Γ of G

A planar graph G

Edge-Length Ratio of a Planar Graph

Definition

The edge-length-ratio $\rho(G)$ of a planar graph G is the infimum of $\rho(\Gamma)$ over all planar straight-line drawings Γ of G

A planar graph G

A drawing of G with $\rho(\mathcal{G})=1$

Outline

Motivation and Background

The Problem

Our Results

Some Highlights

Wrapping Up

Outerplanar Graphs Have Small Edge-Length Ratio

Theorem

Outerplanar Graphs Have Small Edge-Length Ratio

Theorem

- The edge-length ratio of any outerplanar graph G is strictly less than 2

Outerplanar Graphs Have Small Edge-Length Ratio

Theorem

- The edge-length ratio of any outerplanar graph G is strictly less than 2
- For any $\epsilon>0$, there exists outerplanar graphs G with $\rho(G)>2-\epsilon$

Outerplanar Graphs Have Small Edge-Length Ratio

Theorem

- The edge-length ratio of any outerplanar graph G is strictly less than 2
- For any $\epsilon>0$, there exists outerplanar graphs G with $\rho(G)>2-\epsilon$

Theorem

Outerplanar Graphs Have Small Edge-Length Ratio

Theorem

- The edge-length ratio of any outerplanar graph G is strictly less than 2
- For any $\epsilon>0$, there exists outerplanar graphs G with $\rho(G)>2-\epsilon$

Theorem
Every bipartite outerplanar graph G admits a unit-length planar straight-line drawing: $\rho(G)=1$

Outerplanar Graphs Have Small Edge-Length Ratio

Theorem

- The edge-length ratio of any outerplanar graph G is strictly less than 2
- For any $\epsilon>0$, there exists outerplanar graphs G with $\rho(G)>2-\epsilon$

Theorem
Every bipartite outerplanar graph G admits a unit-length planar straight-line drawing: $\rho(G)=1$

Theorem

Outerplanar Graphs Have Small Edge-Length Ratio

Theorem

- The edge-length ratio of any outerplanar graph G is strictly less than 2
- For any $\epsilon>0$, there exists outerplanar graphs G with $\rho(G)>2-\epsilon$

Theorem
Every bipartite outerplanar graph G admits a unit-length planar straight-line drawing: $\rho(G)=1$

Theorem
For any $k>0$, there exists an embedded outerplanar graph Γ with $\rho(\Gamma)>k$

Outline

Motivation and Background

The Problem

Our Results

Some Highlights

Wrapping Up

Constructing an Outerplanar Graph with $\rho>2-\epsilon$

Warning: High School Trig Ahead...

Constructing an Outerplanar Graph with $\rho>2-\epsilon$ Warning: High School Trig Ahead...

Fact
The edge length ratio of a triangle with smallest angle θ is at least $2 \cos (\theta)$

Constructing an Outerplanar Graph with $\rho>2-\epsilon$
 Warning: High School Trig Ahead...

Fact
The edge length ratio of a triangle with smallest angle θ is at least $2 \cos (\theta)$

The fan G_{15}

Constructing an Outerplanar Graph with $\rho>2-\epsilon$
 Warning: High School Trig Ahead...

Fact
The edge length ratio of a triangle with smallest angle θ is at least $2 \cos (\theta)$

Corollary
Let G_{k} be the fan of degree $k+1$. Then $\rho(G) \geq 2 \cos \left(\frac{2 \pi}{k}\right)$

The fan G_{15}

Constructing an Outerplanar Graph with $\rho>2-\epsilon$
 Warning: High School Trig Ahead...

Fact
The edge length ratio of a triangle with smallest angle θ is at least $2 \cos (\theta)$

Corollary
Let G_{k} be the fan of degree $k+1$. Then $\rho(G) \geq 2 \cos \left(\frac{2 \pi}{k}\right)$ So

$$
\lim _{k \rightarrow \infty} \rho\left(G_{k}\right)=2
$$

The fan G_{15}

Drawing Outerplanar Graphs So That $\rho<2$

Drawing Outerplanar Graphs So That $\rho<2$

The plan

Drawing Outerplanar Graphs So That $\rho<2$

The plan

- Assume that G is maximal outerplanar

Drawing Outerplanar Graphs So That $\rho<2$

The plan

- Assume that G is maximal outerplanar
- Partition triangles of G into strips

Drawing Outerplanar Graphs So That $\rho<2$

The plan

- Assume that G is maximal outerplanar
- Partition triangles of G into strips
- Note that the set of strips naturally forms a tree

Drawing Outerplanar Graphs So That $\rho<2$

The plan

- Assume that G is maximal outerplanar
- Partition triangles of G into strips
- Note that the set of strips naturally forms a tree
- Recursively draw each strip starting at root of tree

Drawing Outerplanar Graphs So That $\rho<2$

Partition triangles of G into strips

Drawing Outerplanar Graphs So That $\rho<2$

Partition triangles of G into strips

Choose an external edge of G

Drawing Outerplanar Graphs So That $\rho<2$

Partition triangles of G into strips

It determines a unique triangle T_{0}...

Drawing Outerplanar Graphs So That $\rho<2$
 Partition triangles of G into strips

...which determines unique triangles T_{1} and T_{-1}

Drawing Outerplanar Graphs So That $\rho<2$

Partition triangles of G into strips

Now cleverly label the vertices...

Drawing Outerplanar Graphs So That $\rho<2$
 Partition triangles of G into strips

...to uniquely determine a chain of triangles with a single bend

Drawing Outerplanar Graphs So That $\rho<2$

Partition triangles of G into strips

A U-chain of triangles in G

Drawing Outerplanar Graphs So That $\rho<2$
 Partition triangles of G into strips

Removing short edges decomposes G into 2-connected components

The U-Chain Decomposition of G from e

The U-Chain Decomposition of G from e

To decompose G into a tree of U-chains, start with an edge e from the outer face of G

The U-Chain Decomposition of G from e

To decompose G into a tree of U-chains, start with an edge e from the outer face of G

- Compute the unique U-Chain in G determined by e

The U-Chain Decomposition of G from e

To decompose G into a tree of U-chains, start with an edge e from the outer face of G

- Compute the unique U-Chain in G determined by e
- Remove the short edges (vertices differ by at most 1) of the U-chain from G

The U-Chain Decomposition of G from e

To decompose G into a tree of U-chains, start with an edge e from the outer face of G

- Compute the unique U-Chain in G determined by e
- Remove the short edges (vertices differ by at most 1) of the U-chain from G
- There is now a 2 -connected component G_{i} for each remaining (long) edge e_{i} of the U-chain determined by e.

The U-Chain Decomposition of G from e

To decompose G into a tree of U-chains, start with an edge e from the outer face of G

- Compute the unique U-Chain in G determined by e
- Remove the short edges (vertices differ by at most 1) of the U-chain from G
- There is now a 2 -connected component G_{i} for each remaining (long) edge e_{i} of the U-chain determined by e.
- Recursively compute the U-chain decomposition for each G_{i} from e_{i}

How To Draw A U-Chain

How To Draw A U-Chain

The Idea: Draw a U-Chain from external edge e, like this

How To Draw A U-Chain

The Idea: Draw a U-Chain from external edge e, like this

How To Draw A U-Chain

The Idea: Draw a U-Chain from external edge e, like this

- e is drawn unit length with non-zero slope (w.r.t. d)

How To Draw A U-Chain

The Idea: Draw a U-Chain from external edge e, like this

- e is drawn unit length with non-zero slope (w.r.t. d)
- The long edges are drawn unit-length with non-zero slope

How To Draw A U-Chain

The Idea: Draw a U-Chain from external edge e, like this

- e is drawn unit length with non-zero slope (w.r.t. d)
- The long edges are drawn unit-length with non-zero slope
- The short edges each have length in the range $\left(\frac{1}{2}, 1\right)$

How To Draw A U-Chain

How To Draw A U-Chain

The Idea: Each long edge e^{\prime} has an empty strip $S\left(s^{\prime}\right)$ for its own chain

How To Draw A U-Chain

The Idea: Each long edge e^{\prime} has an empty strip $S\left(s^{\prime}\right)$ for its own chain

d

How To Draw A U-Chain

A helpful lemma

How To Draw A U-Chain
 A helpful lemma

Lemma
Given U-chain C of length n from e and unit-length segment s of positive angle $\theta<\theta_{0}=\arccos (1 / 4) \approx 75.5^{\circ}$

How To Draw A U-Chain
 A helpful lemma

Lemma
Given U-chain C of length n from e and unit-length segment s of positive angle $\theta<\theta_{0}=\arccos (1 / 4) \approx 75.5^{\circ}$ There exists a planar straight-line drawing Γ of C such that

How To Draw A U-Chain

A helpful lemma

Lemma

Given U-chain C of length n from e and unit-length segment s of positive angle $\theta<\theta_{0}=\arccos (1 / 4) \approx 75.5^{\circ}$ There exists a planar straight-line drawing Γ of C such that

- 「 lies within the horizontal strip $S(s)$ with left boundary s

How To Draw A U-Chain

A helpful lemma

Lemma

Given U-chain C of length n from e and unit-length segment s of positive angle $\theta<\theta_{0}=\arccos (1 / 4) \approx 75.5^{\circ}$ There exists a planar straight-line drawing Γ of C such that

- 「 lies within the horizontal strip $S(s)$ with left boundary s
- Each long edge e^{\prime} of C is drawn as unit-length s^{\prime} with non-zero slope in the range $(-\theta, \theta)$

How To Draw A U-Chain

A helpful lemma

Lemma

Given U-chain C of length n from e and unit-length segment s of positive angle $\theta<\theta_{0}=\arccos (1 / 4) \approx 75.5^{\circ}$ There exists a planar straight-line drawing Γ of C such that

- 「 lies within the horizontal strip $S(s)$ with left boundary s
- Each long edge e^{\prime} of C is drawn as unit-length s^{\prime} with non-zero slope in the range $(-\theta, \theta)$
- The strips $S\left(s^{\prime}\right)$ intersect Γ only at s^{\prime}

How To Draw A U-Chain

A helpful lemma

Lemma

Given U-chain C of length n from e and unit-length segment s of positive angle $\theta<\theta_{0}=\arccos (1 / 4) \approx 75.5^{\circ}$ There exists a planar straight-line drawing Γ of C such that

- 「 lies within the horizontal strip $S(s)$ with left boundary s
- Each long edge e^{\prime} of C is drawn as unit-length s^{\prime} with non-zero slope in the range $(-\theta, \theta)$
- The strips $S\left(s^{\prime}\right)$ intersect Γ only at s^{\prime}
- The short edges have lengths greater than $\frac{1}{2}$

How To Draw A U-Chain

A helpful lemma

Lemma

Given U-chain C of length n from e and unit-length segment s of positive angle $\theta<\theta_{0}=\arccos (1 / 4) \approx 75.5^{\circ}$ There exists a planar straight-line drawing Γ of C such that

- 「 lies within the horizontal strip $S(s)$ with left boundary s
- Each long edge e^{\prime} of C is drawn as unit-length s^{\prime} with non-zero slope in the range $(-\theta, \theta)$
- The strips $S\left(s^{\prime}\right)$ intersect Γ only at s^{\prime}
- The short edges have lengths greater than $\frac{1}{2}$

Moreover, such a drawing can be computed in $O(n)$-time in the real RAM model.

Proving the Lemma
 Drawing the Chain

Proving the Lemma

Drawing the Chain

Drawing T_{0} and T_{1}

Proving the Lemma

Drawing the Chain

Drawing T_{2}, \ldots

Proving the Lemma

Drawing the Chain

Drawing T_{-1}, T_{-2}, \ldots

Proving the Lemma

Drawing the Chain

Positioning v_{1} appropriately

Unit-Length PSLDs for Bipartite Outerplanar Graphs

A similar construction

Unit-Length PSLDs for Bipartite Outerplanar Graphs

A similar construction

Assume that T is maximal: All faces are quadrilaterals

- Choose a face F with an external edge e

Unit-Length PSLDs for Bipartite Outerplanar Graphs

A similar construction

Assume that T is maximal: All faces are quadrilaterals

- Choose a face F with an external edge e
- Draw F within a wide wedge

Unit-Length PSLDs for Bipartite Outerplanar Graphs

A similar construction

Assume that T is maximal: All faces are quadrilaterals

- Choose a face F with an external edge e
- Draw F within a wide wedge

Unit-Length PSLDs for Bipartite Outerplanar Graphs
A similar construction

Assume that T is maximal: All faces are quadrilaterals

- Choose a face F with an external edge e
- Draw F within a wide wedge
- Removing e from G leaves up to 3 2-connected components

Unit-Length PSLDs for Bipartite Outerplanar Graphs
A similar construction

Assume that T is maximal: All faces are quadrilaterals

- Choose a face F with an external edge e
- Draw F within a wide wedge
- Removing e from G leaves up to 3 2-connected components
- Draw each component recursively in its own wide wedge

Unit-Length PSLDs for Bipartite Outerplanar Graphs

A similar construction

Unit-Length PSLDs for Bipartite Outerplanar Graphs

A similar construction
Given a wedge of interior angle $\pi+\epsilon$

Unit-Length PSLDs for Bipartite Outerplanar Graphs

A similar construction
Given a wedge of interior angle $\pi+\epsilon$

Unit-Length PSLDs for Bipartite Outerplanar Graphs

A similar construction
Draw a rhombus inside it

Unit-Length PSLDs for Bipartite Outerplanar Graphs

A similar construction
Consider the rays leaving the top side

Unit-Length PSLDs for Bipartite Outerplanar Graphs

A similar construction
Rotate them slightly to make three new wide wedges

Constructing an Embedding with $\rho>k$

Constructing an Embedding with $\rho>k$

A triangle

Constructing an Embedding with $\rho>k$

\mathcal{G}_{0} with distinguished edges

Constructing an Embedding with $\rho>k$

Add 2 triangles to each distinguished edge of \mathcal{G}_{0}

Constructing an Embedding with $\rho>k$

\mathcal{G}_{1} with distinguished edges

Constructing an Embedding with $\rho>k$

Add 2 triangles to each distinguished edge of \mathcal{G}_{1}

Constructing an Embedding with $\rho>k$

\mathcal{G}_{2} with distinguished edges

Outline

Motivation and Background

The Problem

Our Results

Some Highlights

Wrapping Up

Some Open Problems

Some Open Problems

- It's plausible that outerplanar graphs may have an upper bound on edge-length ratio that depends only on the size of the smallest cycle.

Some Open Problems

- It's plausible that outerplanar graphs may have an upper bound on edge-length ratio that depends only on the size of the smallest cycle.

Is this the case?

Some Open Problems

- It's plausible that outerplanar graphs may have an upper bound on edge-length ratio that depends only on the size of the smallest cycle.

Is this the case?

- What larger classes of planar graphs have bounded edge-length ratio?

Some Open Problems

- It's plausible that outerplanar graphs may have an upper bound on edge-length ratio that depends only on the size of the smallest cycle.

Is this the case?

- What larger classes of planar graphs have bounded edge-length ratio?

Perhaps 2-trees?

Some Open Problems

- It's plausible that outerplanar graphs may have an upper bound on edge-length ratio that depends only on the size of the smallest cycle.

Is this the case?

- What larger classes of planar graphs have bounded edge-length ratio?

Perhaps 2-trees?
(We don't think so.)

Some Open Problems

- It's plausible that outerplanar graphs may have an upper bound on edge-length ratio that depends only on the size of the smallest cycle.

Is this the case?

- What larger classes of planar graphs have bounded edge-length ratio?

> Perhaps 2-trees?
> (We don't think so.)

- Given a constant $c<2$, what is the complexity of deciding whether an outerplanar graph has edge-length ratio at most c ?

