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In Graph Drawing (1999), Di Battista, Eades, Tamassia, and
Tollis identify 11 desirable drawing aesthetics, including

• Maximum Edge Length
• Uniform Edge Length

Efforts to produce drawings that reflect these two aesthetics
have proven hard to come by
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Eades and Wormald(1990)

• Does G admit a planar straight-line drawing
(PSLD) with prescribed edge lengths?

• Does a 2-connected G admit a unit length
PSLD?

Cabello, Demaine, and Rote (2007)
Does a 3-connected G admit a unit-length PSLD?

Bhatt and Cosmadakis (1987)
Does a tree T with ∆(T ) ≤ 4 admit a unit-length
PSLD with vertices on integer grid points?
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Relative Edge Lengths

Aichholzer, Hoffmann, van Kreveld, and Rote (2014)
Characterize the graphs such that, for any total
ordering of the edges, there is a PSLD such that
the sorted edge lengths appear in the same order

Eades and Wormald(1990)
Determining whether a 2-connected G has a
PSLD with all edges having lengths within ε of 1 is
NP-Hard

Hoffmann, van Kreveld, Kusters, and Rote (2014)
Construct a family of embedded planar graphs
having unbounded edge-length ratio
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Theorem

• The edge-length ratio of any outerplanar graph G is strictly
less than 2

• For any ε > 0, there exists outerplanar graphs G with
ρ(G) > 2− ε

Theorem
Every bipartite outerplanar graph G admits a unit-length planar
straight-line drawing: ρ(G) = 1

Theorem
For any k > 0, there exists an embedded outerplanar graph Γ
with ρ(Γ) > k
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Constructing an Outerplanar Graph with ρ > 2− ε
Warning: High School Trig Ahead...

Fact
The edge length ratio of a triangle with smallest angle θ is at
least 2cos(θ)

The fan G15

Corollary
Let Gk be the fan of degree
k + 1. Then ρ(G) ≥ 2cos(2π

k )
So

lim
k→∞

ρ(Gk ) = 2
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• Note that the set of strips naturally forms a tree
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It determines a unique triangle T0...
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Drawing Outerplanar Graphs So That ρ < 2
Partition triangles of G into strips

e′

T0

T1

T−1

...which determines unique triangles T1 and T−1
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Drawing Outerplanar Graphs So That ρ < 2
Partition triangles of G into strips

e′0− 0+

1

−1

2

T0

T1

T−1

Now cleverly label the vertices...
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Drawing Outerplanar Graphs So That ρ < 2
Partition triangles of G into strips

e′0− 0+

1

−1

−2

−3

2

3

T0

T1

T−1

4

...to uniquely determine a chain of triangles with a single bend
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Drawing Outerplanar Graphs So That ρ < 2
Partition triangles of G into strips

e′0− 0+

1

−1

−2

−3

2

3

T0

T1

T2

T−1

T−2
T−3

4

T3

A U-chain of triangles in G
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Drawing Outerplanar Graphs So That ρ < 2
Partition triangles of G into strips

e′

Removing short edges decomposes G into 2-connected
components
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The U-Chain Decomposition of G from e

To decompose G into a tree of U-chains, start with an edge e
from the outer face of G
• Compute the unique U-Chain in G determined by e
• Remove the short edges (vertices differ by at most 1) of

the U-chain from G
• There is now a 2-connected component Gi for each

remaining (long) edge ei of the U-chain determined by e.
• Recursively compute the U-chain decomposition for each

Gi from ei
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How To Draw A U-Chain

The Idea: Draw a U-Chain from external edge e, like this

v−0

v+0

v1

v2

v3

v4

v5

v−1

v−2

v−3

v−4

d
e

• e is drawn unit length with non-zero slope (w.r.t. d)
• The long edges are drawn unit-length with non-zero slope
• The short edges each have length in the range (1

2 ,1)
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How To Draw A U-Chain
The Idea: Draw a U-Chain from external edge e, like this
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How To Draw A U-Chain

The Idea: Each long edge e′ has an empty strip S(s′) for its
own chain
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How To Draw A U-Chain
A helpful lemma

Lemma
Given U-chain C of length n from e and unit-length segment s
of positive angle θ < θ0 = arccos(1/4) ≈ 75.5◦ There exists a
planar straight-line drawing Γ of C such that
• Γ lies within the horizontal strip S(s) with left boundary s
• Each long edge e′ of C is drawn as unit-length s′ with

non-zero slope in the range (−θ, θ)

• The strips S(s′) intersect Γ only at s′

• The short edges have lengths greater than 1
2

Moreover, such a drawing can be computed in O(n)-time in the
real RAM model.
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Proving the Lemma
Drawing the Chain

Drawing T0 and T1
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Proving the Lemma
Drawing the Chain

Drawing T2, ...
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Proving the Lemma
Drawing the Chain

Drawing T−1,T−2, . . .
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Proving the Lemma
Drawing the Chain

Positioning v1 appropriately
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Unit-Length PSLDs for Bipartite Outerplanar Graphs
A similar construction

Assume that T is maximal: All faces are quadrilaterals

• Choose a face F with an
external edge e

• Draw F within a wide
wedge

• Removing e from G
leaves up to 3
2-connected
components

• Draw each component
recursively in its own
wide wedge
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Unit-Length PSLDs for Bipartite Outerplanar Graphs
A similar construction

Draw a rhombus inside it
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Unit-Length PSLDs for Bipartite Outerplanar Graphs
A similar construction

Consider the rays leaving the top side
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Unit-Length PSLDs for Bipartite Outerplanar Graphs
A similar construction

Rotate them slightly to make three new wide wedges
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A triangle



MOTIVATION AND BACKGROUND THE PROBLEM OUR RESULTS SOME HIGHLIGHTS WRAPPING UP

Constructing an Embedding with ρ > k

A triangle



MOTIVATION AND BACKGROUND THE PROBLEM OUR RESULTS SOME HIGHLIGHTS WRAPPING UP

Constructing an Embedding with ρ > k

G0 with distinguished edges
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Constructing an Embedding with ρ > k

Add 2 triangles to each distinguished edge of G0
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Constructing an Embedding with ρ > k

G1 with distinguished edges
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Constructing an Embedding with ρ > k

Add 2 triangles to each distinguished edge of G1
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Constructing an Embedding with ρ > k

G2 with distinguished edges
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Some Open Problems

• It’s plausible that outerplanar graphs may have an upper
bound on edge-length ratio that depends only on the size
of the smallest cycle.

Is this the case?

• What larger classes of planar graphs have bounded
edge-length ratio?

Perhaps 2-trees?
(We don’t think so.)

• Given a constant c < 2, what is the complexity of deciding
whether an outerplanar graph has edge-length ratio at
most c?
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