Tamara Mchedlidze Karlsruhe Institute of Technology

Marcel Radermacher Ignaz Rutter

Karlsruhe Institute of Technology

TU Eindhoven
TU/e
Technische Universiteit
Eindhoven
University of Technology

Aligned Drawings of Planar Graphs
GD'17 . Sept. 25, 2017

Aligned Drawings of Graphs

Aligned Drawings of Graphs

pseudolines

Aligned Drawings of Graphs

pseudolines

Aligned Drawings of Graphs

pseudolines

Aligned Drawings of Graphs

Aligned Graphs with Aligned Drawings

Pseudolines

Planar embedded

Aligned Graphs with Aligned Drawings

Pseudolines

Lines
A

Planar embedded graph

Aligned Graph

$$
+
$$

$$
G=(V, E)
$$

(G, \mathcal{A})

Aligned Drawing
$=\quad(\Gamma, A)$

Aligned Graphs with Aligned Drawings

Pseudolines

stretchable

Planar embedded graph

Aligned Graphs with Aligned Drawings

Wanted

Drawing Aligned Graphs on One Line

Planar embedded graph G, bicoloring $V=A \dot{\cup} B$ A and B separable by a pseudoline $\Leftrightarrow A, B$ linear separable.

Drawing Aligned Graphs on One Line

Planar embedded graph G, bicoloring $V=A \dot{\cup} B$
A and B separable by a pseudoline $\Leftrightarrow A, B$ linear separable.

Every aligned graph ($G,\{\mathcal{C}\}$) has an aligned drawing.

Drawing Aligned Graphs on One Line

Planar embedded graph G, bicoloring $V=A \dot{\cup} B$
A and B separable by a pseudoline $\Leftrightarrow A, B$ linear separable.

Every aligned graph ($G,\{\mathcal{C}\}$) has an aligned drawing.

Complexity of Aligned Graphs

Complexity of Aligned Graphs

Complexity of Aligned Graphs

- number of pseudolines

Complexity of Aligned Graphs

- number of pseudolines

Complexity of Aligned Graphs

- number of pseudolines
- intersections between edges and pseudolines

Complexity of Aligned Graphs

edge - pseudoline intersections							
0	1	2	3	4	\ldots	k	

Complexity of Aligned Graphs

edge - pseudoline intersections							
0	1	2	3	4	\ldots	k	

not always

Complexity of Aligned Graphs

edge - pseudoline intersections							
0	1	2	3	4	\cdots	k	

Complexity of Aligned Graphs

edge - pseudoline intersections						
0	1	2	3	4	\cdots	k

Drawing k-Aligned Graphs with Short Edges

a short edge intersects at most one pseudoline
the remaining
edges are long

Drawing k-Aligned Graphs with Short Edges

a short edge intersects at most one pseudoline
the remaining edges are long

Theorem Every k-aligned graph without long edges has an aligned drawing.

Proof Sketch

(G, \mathcal{A})

Proof Sketch

Proof Sketch

Proof Sketch

Proof Sketch

Simplify

Contract $\begin{aligned} & \text { aligned } \\ & \text { free }\end{aligned}$

(G, \mathcal{A})

Simplify

(G, \mathcal{A})

$(G / e, \mathcal{A})$

Simplify

Contract $\begin{array}{lll}\text { aligned } \\ \text { free }\end{array}$

Simplify

Simplify

Split at separating triangles.

$$
(G, \mathcal{A})
$$

Simplify

Split at separating triangles.

Simplify

Split at separating triangles.

Simplify

Split at separating triangles.

$\left(G_{\mathrm{in}}, \mathcal{L}_{i}\right)$

Simplify

Split at separating triangles.

$\left(\Gamma_{\mathrm{in}}, L_{i}\right)$

Simplify

Split at separating triangles.

Simplified Aligned Graphs

(G, \mathcal{A}) is a triangulation.
separating triangle free edge floating aligned edge

$\not \subset(G, \mathcal{A})$

Simplified Aligned Graphs

(G, \mathcal{A}) is a triangulation.
separating triangle free edge floating aligned edge

$\not \subset(G, \mathcal{A})$

$$
\Longrightarrow
$$

U

$=(G, \mathcal{A})$

Simplified Aligned Graphs

(G, \mathcal{A}) is a triangulation.
Claim 1 Every cell C contains exactly one vertex.

Claim 2 An aligned vertex is incident to two aligned edges.

$$
\Rightarrow
$$

$$
=(G, \mathcal{A})
$$

Simplified Aligned Graphs

(G, \mathcal{A}) is a triangulation.
Claim 1 Every cell C contains exactly one vertex.

Claim 2 An aligned vertex is incident to two aligned edges.

$$
\Rightarrow
$$

$$
=(G, \mathcal{A})
$$

Claim 1

Claim 1 Every cell C contains exactly one vertex.
Proof by contradiction

- Assume $|V(C)|>1$

Claim 1

Claim 1 Every cell C contains exactly one vertex.
Proof by contradiction

- Assume $|V(C)|>1$

- move vertices from pseudoline

Claim 1

Claim 1 Every cell C contains exactly one vertex.
Proof by contradiction

- Assume $|V(C)|>1$

- move vertices from pseudoline
\Rightarrow pseudolines form a simple cut

Claim 1

Claim 1 Every cell C contains exactly one vertex.
Proof by contradiction

- Assume $|V(C)|>1$

- move vertices from pseudoline
\Rightarrow pseudolines form a simple cut
- no long edges

Claim 1

Claim 1 Every cell C contains exactly one vertex.
Proof by contradiction

- Assume $|V(C)|>1$

- move vertices from pseudoline
\Rightarrow pseudolines form a simple cut
- no long edges
$\Rightarrow C$ is connected

Claim 1

Claim 1 Every cell C contains exactly one vertex.

Proof by contradiction

- Assume $|V(C)|>1$

- move vertices from pseudoline
\Rightarrow pseudolines form a simple cut
- no long edges
$\Rightarrow C$ is connected
$\Rightarrow G$ contains a free edge

Claim 2

Claim 2 An aligned vertex is incident to two aligned edges.

Claim 2

Claim 2 An aligned vertex is incident to two aligned edges.

- a vertex on each intersection and in each cell

Claim 2

Claim 2 An aligned vertex is incident to two aligned edges.

- a vertex on each intersection and in each cell
- no long edges $\& G$ is triangulated

Claim 2

Claim 2 An aligned vertex is incident to two aligned edges.

- a vertex on each intersection and in each cell
- no long edges $\& G$ is triangulated

Claim 2

Claim 2 An aligned vertex is incident to two aligned edges.

- a vertex on each intersection and in each cell
- no long edges $\& G$ is triangulated
- no separating triangles

Claim 2

Claim 2 An aligned vertex is incident to two aligned edges.

- a vertex on each intersection and in each cell
- no long edges $\& G$ is triangulated
- no separating triangles

Aligned Drawings of Aligned Graphs

Theorem Every simplified aligned graph has an aligned drawing.
$(G, \mathcal{A})=$

U

Aligned Drawings of Aligned Graphs

Theorem Every simplified aligned graph has an aligned drawing.
$(G, \mathcal{A})=$

Each cell
is convex

Aligned Drawings of Aligned Graphs

Theorem Every simplified aligned graph has an aligned drawing.
$(G, \mathcal{A})=$

Each cell
is convex

Aligned Drawings of Aligned Graphs

Theorem Every simplified aligned graph has an aligned drawing.
$(G, \mathcal{A})=$

Each cell
is convex

Union of two cells is convex

Aligned Drawings of Aligned Graphs

Theorem Every simplified aligned graph has an aligned drawing.
$(G, \mathcal{A})=$

Each cell
is convex

Union of two cells is convex

Conclusion

Theorem Every* aligned graph $(G,\{\mathcal{C}\})$ has an aligned drawing with a fixed line and a convex outer face.

Conclusion

Theorem Every* aligned graph $(G,\{\mathcal{C}\})$ has an aligned drawing with a fixed line and a convex outer face.

Theorem Every k-aligned graph without long edges has an aligned drawing.

Conclusion

Theorem Every* aligned graph $(G,\{\mathcal{C}\})$ has an aligned drawing with a fixed line and a convex outer face.

Theorem Every k-aligned graph without long edges has an aligned drawing.
 FPT in the size of S.

Future Research

complexity of edge -						
0	1	2	3	4	\cdots	k

Future Research

Future Research

complexity of edge - pseudoline interactions				
0	1	2	3	4

number of pseudolines
2
every aligned graph has an
aligned drawing
\vdots
k
$\square ?$

What is the
computational complexity?

Future Research

What are the 'cells' such that

 every aligned graph has an aligned drawing?> What is the
> computational complexity?

Thank you.

$\stackrel{\frac{\pi}{0}}{2}$

?

