Tamara Mchedlidze

Karlsruhe Institute of Technology

Marcel Radermacher

Karlsruhe Institute of Technology

Ignaz Rutter

TU Eindhoven

Aligned Drawings of Planar Graphs

GD'17 · Sept. 25, 2017

Planar embedded graph G = (V, E)

Aligned Graph

 (G, \mathcal{A})

Drawing Aligned Graphs on One Line

Planar embedded graph G, bicoloring $V = A \dot{\cup} B$ A and B separable by a pseudoline $\Leftrightarrow A, B$ linear separable.

[Biedl et al. '98]

Drawing Aligned Graphs on One Line

Planar embedded graph G, bicoloring $V = A \dot{\cup} B$ A and B separable by a pseudoline $\Leftrightarrow A, B$ linear separable.

[Biedl et al. '98]

Every aligned graph $(G, \{\mathcal{C}\})$ has an aligned drawing.

Da Lozzo et al. '16]

Drawing Aligned Graphs on One Line

Planar embedded graph G, bicoloring $V = A \dot{\cup} B$ A and B separable by a pseudoline $\Leftrightarrow A, B$ linear separable.

[Biedl et al. '98]

Every aligned graph $(G, \{\mathcal{C}\})$ has an aligned drawing.

Drawing *k*-Aligned Graphs with Short Edges

a *short* edge intersects at most one pseudoline

the remaining edges are *long*

Drawing *k*-Aligned Graphs with Short Edges

Theorem Every k-aligned graph without long edges has an aligned drawing.

Proof Sketch

Split at separating triangles.

Split at separating triangles.

 $(G_{\texttt{in}}, \mathcal{L}_i)$

Split at separating triangles.

 $(G_{\texttt{in}}, \mathcal{L}_i)$

Split at separating triangles.

 $(G_{\texttt{in}}, \mathcal{L}_i)$

Split at separating triangles.

 $(\Gamma_{\rm in}, L_i)$

Split at separating triangles.

 (G, \mathcal{A}) is a triangulation.

separating triangle free edge

floating aligned edge

 (G, \mathcal{A}) is a triangulation.

separating triangle free edge

floating aligned edge

 (G, \mathcal{A}) is a triangulation.

Claim 1 Every cell C contains exactly one vertex.

 (G, \mathcal{A}) is a triangulation.

Claim 1 Every cell C contains exactly one vertex.

Claim 1 Every cell C contains exactly one vertex.

Proof by contradiction

• Assume |V(C)| > 1

Claim 1 Every cell C contains exactly one vertex.

- Assume |V(C)| > 1
- move vertices from pseudoline

Claim 1 Every cell C contains exactly one vertex.

- Assume |V(C)| > 1
 - move vertices from pseudoline
- \Rightarrow pseudolines form a simple cut

Claim 1 Every cell C contains exactly one vertex.

- Assume |V(C)| > 1
 - move vertices from pseudoline
- \Rightarrow pseudolines form a simple cut
 - no long edges

Claim 1 Every cell C contains exactly one vertex.

- Assume |V(C)| > 1
- move vertices from pseudoline
- \Rightarrow pseudolines form a simple cut
 - no long edges
- $\Rightarrow C$ is connected

Claim 1 Every cell C contains exactly one vertex.

Proof by contradiction

- Assume |V(C)| > 1
 - move vertices from pseudoline
- \Rightarrow pseudolines form a simple cut
 - no long edges
- $\Rightarrow C$ is connected
- $\Rightarrow G$ contains a free edge

5

Claim 2 An aligned vertex is incident to two aligned edges.

a vertex on each intersection and in each cell

- a vertex on each intersection and in each cell
- $\bullet\,$ no long edges & G is triangulated

- a vertex on each intersection and in each cell
- $\bullet\,$ no long edges & G is triangulated

- a vertex on each intersection and in each cell
- $\bullet\,$ no long edges & G is triangulated
- no separating triangles

- a vertex on each intersection and in each cell
- $\bullet\,$ no long edges & G is triangulated
- no separating triangles

Theorem Every simplified aligned graph has an aligned drawing.

Theorem Every simplified aligned graph has an aligned drawing.

Each cell is convex

Theorem Every simplified aligned graph has an aligned drawing.

Each cell is convex

Theorem Every simplified aligned graph has an aligned drawing.

 $(G,\mathcal{A}) =$

Each cell is convex

Union of two cells is convex

Theorem Every simplified aligned graph has an aligned drawing.

 $(G, \mathcal{A}) =$

Union of two cells is convex

Conclusion

Theorem Every^{*} aligned graph $(G, \{C\})$ has an aligned drawing with a fixed line and a convex outer face.

Conclusion

Theorem Every^{*} aligned graph $(G, \{C\})$ has an aligned drawing with a fixed line and a convex outer face.

Theorem Every *k*-aligned graph without long edges has an aligned drawing.

Conclusion

Theorem Every^{*} aligned graph $(G, \{C\})$ has an aligned drawing with a fixed line and a convex outer face.

Theorem Passing a pseudoline through a given set S of vertices is \mathcal{NP} -hard but FPT in the size of S.

