Hardness of Staircase Guarding

Therese Biedl ${ }^{1}$ Saeed Mehrabi ${ }^{2}$

${ }^{1}$ University of Waterloo, biedl@uwaterloo.ca
${ }^{2}$ was at UW, now at Carleton University, mehrabi235@gmail.com
September 25, 2017

Hardness of Staircase Guarding

Therese Biedl ${ }^{1}$ Saeed Mehrabi ${ }^{2}$
${ }^{1}$ University of Waterloo, biedl@uwaterloo.ca
${ }^{2}$ was at UW, now at Carleton University, mehrabi235@gmail.com

September 25, 2017

Staircase Guarding (s-guarding)

- Given: orthogonal polygon P

Staircase Guarding (s-guarding)

- Given: orthogonal polygon P
- Want: set S of points in P

Staircase Guarding (s-guarding)

- Given: orthogonal polygon P
- Want: set S of points in P
- Guard $g \in S$ sees all points reachable along staircase

Staircase Guarding (s-guarding)

- Given: orthogonal polygon P
- Want: set S of points in P
- Guard $g \in S$ sees all points reachable along staircase
- in all four direction
- no limits on bends
- staircase: xy-monotone

Staircase Guarding (s-guarding)

- Given: orthogonal polygon P
- Want: set S of points in P
- Guard $g \in S$ sees all points reachable along staircase
- in all four direction
- no limits on bends
- staircase: xy-monotone
- Must guard all of polygon P
- Objective: minimize $|S|$

Staircase Guarding (s-guarding)

- Given: orthogonal polygon P
- Want: set S of points in P
- Guard $g \in S$ sees all points reachable along staircase
- in all four direction
- no limits on bends
- staircase: xy-monotone
- Must guard all of polygon P
- Objective: minimize $|S|$
- One type of art gallery problem
- "Given polygon P, guard with few guards"
- Introduced by Klee and Chvátal in 1973
- Many variations of polygons and guards studied, usually they are NP-hard.

Staircase Guarding (s-guarding)

- Given: orthogonal polygon P
- Want: set S of points in P
- Guard $g \in S$ sees all points reachable along staircase
- in all four direction
- no limits on bends
- staircase: xy-monotone
- Must guard all of polygon P
- Objective: minimize $|S|$
- One type of art gallery problem
- "Given polygon P, guard with few guards"
- Introduced by Klee and Chvátal in 1973
- Many variations of polygons and guards studied, usually they are NP-hard.
- s-guarding was introduced in 1990.
- Motwani et al. 1990: polynomial in polygons without holes.
- Gwali \& Naftos 1992: NP-hard in 3D.

Staircase Guarding (s-guarding)

- Given: orthogonal polygon P
- Want: set S of points in P
- Guard $g \in S$ sees all points reachable along staircase
- in all four direction
- no limits on bends
- staircase: xy-monotone
- Must guard all of polygon P
- Objective: minimize $|S|$
- s-guarding was introduced in 1990.
- Motwani et al. 1990: polynomial in polygons without holes.
- Gwali \& Naftos 1992: NP-hard in 3D.
- This talk: It's NP-hard in 2D (in polygons with holes).

Grid-obstacle representations of graphs

Therese Biedl ${ }^{1}$ Saeed Mehrabi ${ }^{2}$

${ }^{1}$ University of Waterloo, biedl@uwaterloo.ca
${ }^{2}$ was at UW, now at Carleton University, mehrabi235@gmail.com
September 25, 2017

Obstacle representations (Alpert et al. 2010)

- Given: graph $G=(V, E)$

Obstacle representations (Alpert et al. 2010)

- Given: graph $G=(V, E)$
- Find: points for vertices

Obstacle representations (Alpert et al. 2010)

- Given: graph $G=(V, E)$
- Find: points for vertices
- Find: obstacles (polygons)

Obstacle representations (Alpert et al. 2010)

- Given: graph $G=(V, E)$
- Find: points for vertices
- Find: obstacles (polygons)
- $(v, w) \in E \Leftrightarrow p_{v}$ can see p_{w}

Obstacle representations (Alpert et al. 2010)

- Given: graph $G=(V, E)$
- Find: points for vertices
- Find: obstacles (polygons)
- $(v, w) \in E \Leftrightarrow p_{v}$ can see p_{w}
- Objective: few obstacles

Obstacle representations (Alpert et al. 2010)

- Given: graph $G=(V, E)$
- Find: points for vertices
- Find: obstacles (polygons)
- $(v, w) \in E \Leftrightarrow p_{v}$ can see p_{w}
- Objective: few obstacles

(done by Fabrizio Frati, as mentioned by Dujmovic and Morin.)
- Can always do it with $O\left(n^{2}\right)$ obstacles.
- Various results on how many obstacles required/enough.

Grid-obstacle representations (Bishnu et al., 2015)

- Same idea, change what "seeing" means

Grid-obstacle representations (Bishnu et al., 2015)

- Same idea, change what "seeing" means
- Was: $(v, w) \in E$
\Leftrightarrow line segment $\overline{p_{v} p_{w}}$ not blocked by obstacles

Grid-obstacle representations (Bishnu et al., 2015)

- Same idea, change what "seeing" means
- Was: $(v, w) \in E$
\Leftrightarrow line segment $\overline{p_{v} p_{w}}$ not blocked by obstacles
\Leftrightarrow shortest $p_{v}-p_{w}$-path not blocked (where "shortest" means "in L_{2}-norm")

Grid-obstacle representations (Bishnu et al., 2015)

- Same idea, change what "seeing" means
- Was: $(v, w) \in E$
\Leftrightarrow line segment $\overline{p_{v} p_{w}}$ not blocked by obstacles
\Leftrightarrow shortest $p_{v}-p_{w}$-path not blocked (where "shortest" means "in L_{2}-norm")
- Now: L_{1}-norm (Manhattan-distance)

Grid-obstacle representations (Bishnu et al., 2015)

- Same idea, change what "seeing" means
- Was: $(v, w) \in E$
\Leftrightarrow line segment $\overline{p_{v} p_{w}}$ not blocked by obstacles
\Leftrightarrow shortest $p_{v}-p_{w}$-path not blocked (where "shortest" means "in L_{2}-norm")
- Now: L_{1}-norm (Manhattan-distance)
- $(v, w) \in E$
\Leftrightarrow some shortest L_{1}-norm path not blocked (Note: there may be many)

Grid-obstacle representations (Bishnu et al., 2015)

- Same idea, change what "seeing" means
- Was: $(v, w) \in E$
\Leftrightarrow line segment $\overline{p_{v} p_{w}}$ not blocked by obstacles
\Leftrightarrow shortest $p_{v}-p_{w}$-path not blocked (where "shortest" means "in L_{2}-norm")
- Now: L_{1}-norm (Manhattan-distance)
- $(v, w) \in E$
\Leftrightarrow some shortest L_{1}-norm path not blocked (Note: there may be many)
\Leftrightarrow some $x y$-monotone orthogonal path not blocked

Grid-obstacle representations (Bishnu et al., 2015)

- Same idea, change what "seeing" means
- Was: $(v, w) \in E$
\Leftrightarrow line segment $\overline{p_{v} p_{w}}$ not blocked by obstacles
\Leftrightarrow shortest $p_{v}-p_{w}$-path not blocked (where "shortest" means "in L_{2}-norm")
- Now: L_{1}-norm (Manhattan-distance)
- $(v, w) \in E$
\Leftrightarrow some shortest L_{1}-norm path not blocked (Note: there may be many)
\Leftrightarrow some $x y$-monotone orthogonal path not blocked
- Special rule 1: everything is on grid.

Grid-obstacle representations (Bishnu et al., 2015)

- Same idea, change what "seeing" means
- Was: $(v, w) \in E$
\Leftrightarrow line segment $\overline{p_{v} p_{w}}$ not blocked by obstacles
\Leftrightarrow shortest $p_{v}-p_{w}$-path not blocked (where "shortest" means "in L_{2}-norm")
- Now: L_{1}-norm (Manhattan-distance)
- $(v, w) \in E$
\Leftrightarrow some shortest L_{1}-norm path not blocked (Note: there may be many)
\Leftrightarrow some $x y$-monotone orthogonal path not blocked
- Special rule 1: everything is on grid.
- Special rule 2: vertex-points block paths.

Grid-obstacle representations (Bishnu et al., 2015)

- Same idea, change what "seeing" means
- Was: $(v, w) \in E$
\Leftrightarrow line segment $\overline{p_{v} p_{w}}$ not blocked by obstacles
\Leftrightarrow shortest $p_{v}-p_{w}$-path not blocked (where "shortest" means "in L_{2}-norm")
- Now: L_{1}-norm (Manhattan-distance)
- $(v, w) \in E$
\Leftrightarrow some shortest L_{1}-norm path not blocked (Note: there may be many)
\Leftrightarrow some $x y$-monotone orthogonal path not blocked
- Special rule 1: everything is on grid.
- Special rule 2: vertex-points block paths.

Completely different model, results don't transfer.

Grid-obstacle representations

- Bishnu et al. (see also poster):
- Exists for all planar graphs in 2D.
- Does not exist for all graphs in 2D.
- Exists for all graphs in 3D.

Grid-obstacle representations

- Bishnu et al. (see also poster):
- Exists for all planar graphs in 2D.
- Does not exist for all graphs in 2D.
- Exists for all graphs in 3D.

Grid-obstacle representations

- Bishnu et al. (see also poster):
- Exists for all planar graphs in 2D.
- Does not exist for all graphs in 2D.
- Exists for all graphs in 3D.

Grid-obstacle representations

- Bishnu et al. (see also poster):
- Exists for all planar graphs in 2D.
- Does not exist for all graphs in 2D.
- Exists for all graphs in 3D.
- New objective: how big is the grid?

Grid-obstacle representations

- Bishnu et al. (see also poster):
- Exists for all planar graphs in 2D.
- Does not exist for all graphs in 2D.
- Exists for all graphs in 3D.
- New objective: how big is the grid?
- Bishnu et al.:
- Planar graphs in 2D: $O\left(n^{8}\right)$ area
- All graphs in 3D: $O\left(n^{22}\right)$ volume

Grid-obstacle representations

- Bishnu et al. (see also poster):
- Exists for all planar graphs in 2D.
- Does not exist for all graphs in 2D.
- Exists for all graphs in 3D.
- New objective: how big is the grid?
- Bishnu et al.:
- Planar graphs in 2D: $O\left(n^{8}\right)$ area
- All graphs in 3D: $O\left(n^{22}\right)$ volume
- This paper:
- Planar graphs in 2D: $O\left(n^{2}\right)$ area
- All graphs in 3D: $O\left(n^{3}\right)$ volume

Grid-obstacle representations

- Bishnu et al. (see also poster):
- Exists for all planar graphs in 2D.
- Does not exist for all graphs in 2D.
- Exists for all graphs in 3D.
- New objective: how big is the grid?
- Bishnu et al.:
- Planar graphs in 2D: $O\left(n^{8}\right)$ area
- All graphs in 3D: $O\left(n^{22}\right)$ volume
- This paper:
- Planar graphs in 2D: $O\left(n^{2}\right)$ area
- All graphs in 3D: $O\left(n^{3}\right)$ volume

Grid-obstacle representations

- Bishnu et al. (see also poster):
- Exists for all planar graphs in 2D.
- Does not exist for all graphs in 2D.
- Exists for all graphs in 3D.
- New objective: how big is the grid?
- Bishnu et al.:
- Planar graphs in 2D: $O\left(n^{8}\right)$ area
- All graphs in 3D: $O\left(n^{22}\right)$ volume
- This paper:
- Planar graphs in 2D: $O\left(n^{2}\right)$ area
- All graphs in 3D: $O\left(n^{3}\right)$ volume

Grid-obstacle representations

- Bishnu et al. (see also poster):
- Exists for all planar graphs in 2D.
- Does not exist for all graphs in 2D.
- Exists for all graphs in 3D.
- New objective: how big is the grid?
- Bishnu et al.:
- Planar graphs in 2D: $O\left(n^{8}\right)$ area
- All graphs in 3D: $O\left(n^{22}\right)$ volume
- This paper:
- Planar graphs in 2D: $O\left(n^{2}\right)$ area
- All graphs in 3D: $O\left(n^{3}\right)$ volume

Non-blocking grid-obstacle representations

- Recall special rule 2: Vertex-points block grid-paths.

Non-blocking grid-obstacle representations

- Recall special rule 2: Vertex-points block grid-paths.
- This was needed in our construction.

Non-blocking grid-obstacle representations

- Recall special rule 2: Vertex-points block grid-paths.
- This was needed in our construction.
- This feels artifical-can we drop it? (Non-blocking grid-obstacle representation.)

Non-blocking grid-obstacle representations

- Recall special rule 2: Vertex-points block grid-paths.
- This was needed in our construction.
- This feels artifical-can we drop it? (Non-blocking grid-obstacle representation.)

Open Problem

Does every planar graph have a non-blocking grid-obstacle representation?

Non-blocking grid-obstacle representations

Theorem

Every planar bipartite graph $G=(A \cup B, E)$ has a non-blocking grid-obstacle representation.

Non-blocking grid-obstacle representations

Theorem

Every planar bipartite graph $G=(A \cup B, E)$ has a non-blocking grid-obstacle representation.

Non-blocking grid-obstacle representations

Theorem

Every planar bipartite graph $G=(A \cup B, E)$ has a non-blocking grid-obstacle representation.

- Create HH-drawing [B., Kaufmann, Mutzel, 1998]
- Vertices of A above x-axis
- Vertices of B below x-axis
- Edges have one bend on x-axis

Non-blocking grid-obstacle representations

Theorem

Every planar bipartite graph $G=(A \cup B, E)$ has a non-blocking grid-obstacle representation.

- Create HH-drawing [B., Kaufmann, Mutzel, 1998]
- Turn into visibility representation [B., GD'14]
- Feasible since edges y-monotone
- All x-coordinates unchanged

Non-blocking grid-obstacle representations

Theorem

Every planar bipartite graph $G=(A \cup B, E)$ has a non-blocking grid-obstacle representation.

- Create HH-drawing [B., Kaufmann, Mutzel, 1998]
- Turn into visibility representation [B., GD'14]
- Interpret as grid, fill complement with obstacles.

Non-blocking grid-obstacle representations

Theorem

Every planar bipartite graph $G=(A \cup B, E)$ has a non-blocking grid-obstacle representation.

- Create HH-drawing [B., Kaufmann, Mutzel, 1998]
- Turn into visibility representation [B., GD'14]
- Interpret as grid, fill complement with obstacles.
- Point for v : rightmost / leftmost point in box of v

Non-blocking grid-obstacle representations

Theorem

Every planar bipartite graph $G=(A \cup B, E)$ has a non-blocking grid-obstacle representation.

- Create HH-drawing [B., Kaufmann, Mutzel, 1998]
- Turn into visibility representation [B., GD'14]
- Interpret as grid, fill complement with obstacles.
- Point for v : rightmost / leftmost point in box of v
- Argue: $(v, w) \in E \Leftrightarrow x y$-monotone grid-path

Grid-obstacle representations with connections to staircase guarding

Therese Biedl ${ }^{1}$ Saeed Mehrabi ${ }^{2}$
${ }^{1}$ University of Waterloo, biedl@uwaterloo.ca
${ }^{2}$ was at UW, now at Carleton University, mehrabi235@gmail.com

September 25, 2017

- Use non-blocking grid-obstacle representation of planar bipartite graph.

- Use non-blocking grid-obstacle representation of planar bipartite graph.
- Refine grid.

From obstacle-representation to hardness

- Use non-blocking grid-obstacle representation of planar bipartite graph.
- Refine grid.
- Add swirl at every edge.

From obstacle-representation to hardness

- Use non-blocking grid-obstacle representation of planar bipartite graph.
- Refine grid.
- Add swirl at every edge.
- Add vertex-squares.

- Use non-blocking grid-obstacle representation of planar bipartite graph.
- Refine grid.
- Add swirl at every edge.
- Add vertex-squares.
- Forget grid \Rightarrow polygon.

- Use non-blocking grid-obstacle representation of planar bipartite graph.
- Refine grid.
- Add swirl at every edge.
- Add vertex-squares.
- Forget grid \Rightarrow polygon.
- Staircase-guard it?
- Need guard on left swirl-part.
- Use non-blocking grid-obstacle representation of planar bipartite graph.
- Refine grid.
- Add swirl at every edge.
- Add vertex-squares.
- Forget grid \Rightarrow polygon.
- Staircase-guard it?
- Need guard on left swirl-part. (Does not see vertex-square.)
- Use non-blocking grid-obstacle representation of planar bipartite graph.
- Refine grid.
- Add swirl at every edge.
- Add vertex-squares.
- Forget grid \Rightarrow polygon.
- Staircase-guard it?
- Need guard on left swirl-part. (Does not see vertex-square.)
- $2 m$ swirl-guards see all except vertex-squares.
- Use non-blocking grid-obstacle representation of planar bipartite graph.
- Refine grid.
- Add swirl at every edge.
- Add vertex-squares.
- Forget grid \Rightarrow polygon.
- Staircase-guard it?
- Need guard on left swirl-part. (Does not see vertex-square.)
- $2 m$ swirl-guards see all except vertex-squares.
- Guard at v sees all squares of all neighbours of v.
- Use non-blocking
 grid-obstacle representation of planar bipartite graph.
- Refine grid.
- Add swirl at every edge.
- Add vertex-squares.
- Forget grid \Rightarrow polygon.
- Staircase-guard it?
- Need guard on left swirl-part. (Does not see vertex-square.)
- $2 m$ swirl-guards see all except vertex-squares.
- Guard at v sees all squares of all neighbours of v.
$\Rightarrow 2 m+k$ guards suffice $\Leftrightarrow G$ has dominating set of size k.

From obstacle-representation to hardness

Dominating set is NP-hard in planar bipartite graphs \Longrightarrow

Theorem

Staircase-guarding is NP-hard in orthogonal polygons with holes.

Conclusion

- Some improvements to grid-obstacle representations.

Conclusion

- Some improvements to grid-obstacle representations.
- Cute application: NP-hardness of staircase-guarding.

Conclusion

- Some improvements to grid-obstacle representations.
- Cute application: NP-hardness of staircase-guarding.
- Open: Planar graphs have non-blocking grid-obstacle repr.?

Conclusion

- Some improvements to grid-obstacle representations.
- Cute application: NP-hardness of staircase-guarding.
- Open: Planar graphs have non-blocking grid-obstacle repr.?
- Open: Could we do $o(n) \times o(n)$-grid for planar graphs?
- Representation would have to "not look like planar drawing"

Conclusion

- Some improvements to grid-obstacle representations.
- Cute application: NP-hardness of staircase-guarding.
- Open: Planar graphs have non-blocking grid-obstacle repr.?
- Open: Could we do $o(n) \times o(n)$-grid for planar graphs?
- Representation would have to "not look like planar drawing"
- Open: Could we do o(n) obstacles in 2D?

Conclusion

