Hardness of Staircase Guarding

Therese Biedl¹ Saeed Mehrabi²

¹University of Waterloo, *biedl@uwaterloo.ca*

²was at UW, now at Carleton University, *mehrabi235@gmail.com*

September 25, 2017

Hardness of Staircase Guarding

Therese Biedl¹ Saeed Mehrabi²

¹University of Waterloo, *biedl@uwaterloo.ca*

²was at UW, now at Carleton University, mehrabi235@gmail.com

September 25, 2017

- Given: orthogonal polygon P
- Want: set S of points in P

- Given: orthogonal polygon P
- Want: set S of points in P
- Guard g ∈ S sees all points reachable along staircase

- Given: orthogonal polygon P
- Want: set S of points in P
- Guard g ∈ S sees all points reachable along staircase
 - in all four direction
 - no limits on bends
 - staircase: xy-monotone

- Given: orthogonal polygon P
- Want: set S of points in P
- Guard g ∈ S sees all points reachable along staircase
 - in all four direction
 - no limits on bends
 - staircase: xy-monotone
- Must guard all of polygon P
- Objective: minimize |S|

- Given: orthogonal polygon P
- Want: set S of points in P
- Guard g ∈ S sees all points reachable along staircase
 - in all four direction
 - no limits on bends
 - staircase: *xy*-monotone
- Must guard all of polygon P
- Objective: minimize |S|
- One type of art gallery problem
 - "Given polygon P, guard with few guards"
 - Introduced by Klee and Chvátal in 1973
 - Many variations of polygons and guards studied, usually they are NP-hard.

- Given: orthogonal polygon P
- Want: set S of points in P
- Guard g ∈ S sees all points reachable along staircase
 - in all four direction
 - no limits on bends
 - staircase: *xy*-monotone
- Must guard all of polygon P
- Objective: minimize |S|
- One type of art gallery problem
 - "Given polygon P, guard with few guards"
 - Introduced by Klee and Chvátal in 1973
 - Many variations of polygons and guards studied, usually they are NP-hard.
- s-guarding was introduced in 1990.
 - Motwani et al. 1990: polynomial in polygons without holes.
 - Gwali & Naftos 1992: NP-hard in 3D.

- Given: orthogonal polygon P
- Want: set S of points in P
- Guard g ∈ S sees all points reachable along staircase
 - in all four direction
 - no limits on bends
 - staircase: xy-monotone
- Must guard all of polygon P
- Objective: minimize |S|
- s-guarding was introduced in 1990.
 - Motwani et al. 1990: polynomial in polygons without holes.
 - Gwali & Naftos 1992: NP-hard in 3D.
- This talk: It's NP-hard in 2D (in polygons with holes).

(Picture shamelessly stolen from xkcd.com.)

(Creative Commons Attribution-NonCommercial 2.5 License.)

(日) (同) (E) (E) (E)

Grid-obstacle representations of graphs

Therese Biedl¹ Saeed Mehrabi²

¹University of Waterloo, *biedl@uwaterloo.ca*

²was at UW, now at Carleton University, *mehrabi235@gmail.com*

September 25, 2017

• Given: graph G = (V, E)

回 と く ヨ と く ヨ と …

æ

• Given: graph G = (V, E)

< E > < E >

• Find: points for vertices

- Given: graph G = (V, E)
- Find: points for vertices
- Find: obstacles (polygons)

- Given: graph G = (V, E)
- Find: points for vertices
- Find: obstacles (polygons)
- $(v, w) \in E \Leftrightarrow p_v$ can see p_w

- Given: graph G = (V, E)
- Find: points for vertices
- Find: obstacles (polygons)
- $(v, w) \in E \Leftrightarrow p_v$ can see p_w
- Objective: few obstacles

- Given: graph G = (V, E)
- Find: points for vertices
- Find: obstacles (polygons)
- $(v, w) \in E \Leftrightarrow p_v$ can see p_w
- Objective: few obstacles

(done by Fabrizio Frati, as mentioned by Dujmovic and Morin.)

- Can always do it with $O(n^2)$ obstacles.
- Various results on how many obstacles required/enough.

• Same idea, change what "seeing" means

- Same idea, change what "seeing" means
- Was: $(v, w) \in E$

 \Leftrightarrow line segment $\overline{p_v p_w}$ not blocked by obstacles

- Same idea, change what "seeing" means
- Was: $(v, w) \in E$
 - \Leftrightarrow line segment $\overline{p_v p_w}$ not blocked by obstacles
 - \Leftrightarrow shortest p_v - p_w -path not blocked

(where "shortest" means "in L₂-norm")

- Same idea, change what "seeing" means
- Was: $(v, w) \in E$
 - $\Leftrightarrow \text{ line segment } \overline{p_v p_w} \text{ not blocked by obstacles}$
 - \Leftrightarrow shortest p_v - p_w -path not blocked

(where "shortest" means "in L₂-norm")

• Now: *L*₁-norm (Manhattan-distance)

- Same idea, change what "seeing" means
- Was: $(v, w) \in E$
 - $\Leftrightarrow \text{ line segment } \overline{p_v p_w} \text{ not blocked by obstacles}$
 - \Leftrightarrow shortest p_v - p_w -path not blocked

(where "shortest" means "in L_2 -norm")

- Now: *L*₁-norm (Manhattan-distance)

 $\Leftrightarrow \underline{\text{some}} \text{ shortest } L_1 \text{-norm path not blocked} \\ \overline{(\text{Note: there may be many})}$

- Same idea, change what "seeing" means
- Was: $(v, w) \in E$
 - $\Leftrightarrow \text{ line segment } \overline{p_v p_w} \text{ not blocked by obstacles}$
 - \Leftrightarrow shortest p_v - p_w -path not blocked

(where "shortest" means "in L_2 -norm")

• • •

• Now: L₁-norm (Manhattan-distance)

•
$$(v, w) \in E$$

- $\Leftrightarrow \underline{\text{some}} \text{ shortest } L_1 \text{-norm path not blocked} \\ \overline{(\text{Note: there may be many})}$
- ⇔ some xy-monotone orthogonal path not blocked

- Same idea, change what "seeing" means
- Was: $(v, w) \in E$
 - \Leftrightarrow line segment $\overline{p_v p_w}$ not blocked by obstacles
 - \Leftrightarrow shortest p_v - p_w -path not blocked

(where "shortest" means "in L_2 -norm")

	۲	•	۲	•	•	•	•	•	۰.
•	÷÷	÷	۲	÷	÷	÷	٠	'n	4 -
·	•	÷	÷	• • •	٠	÷	÷	4.	۰.
•	-	•	۲	•	÷.	۰	٠	٠	- 🌰
		4	.;		۰	4	ф.	ф.	۰.
	4	4	Ó	с,	٠	4	Ó	ф.	1.
	۲	•	÷	•	۰	•	÷.	•	۰.

- Now: L₁-norm (Manhattan-distance)
- (v, w) ∈ E
 - $\Leftrightarrow \underline{\text{some}} \text{ shortest } L_1 \text{-norm path not blocked} \\ \overline{(\text{Note: there may be many})}$
 - ⇔ some xy-monotone orthogonal path not blocked

向下 イヨト イヨト

• Special rule 1: everything is on grid.

- Same idea, change what "seeing" means
- Was: $(v, w) \in E$
 - $\Leftrightarrow \text{ line segment } \overline{p_v p_w} \text{ not blocked by obstacles}$
 - \Leftrightarrow shortest p_v - p_w -path not blocked

(where "shortest" means "in L_2 -norm")

	•	٠	•	•	•	•	•	•	•
	Ξ.	Τ.	ē	Д,	ě.	Ξ.	ē	Ť	Ι.
-	٠.	÷	÷	÷	۲	÷	-	4	۰.
-	۰.	٠	۲	۲	ŀ.	•	۲	۲	۰.
•	٠.	÷	Γ.	•	۲	÷	÷	÷	٠.
•	÷÷÷	÷	¢	÷	۲	÷	¢	÷	÷÷-
•	•	٠	۲	۲	۲	۲	۲	۲	•

- Now: L₁-norm (Manhattan-distance)
- (v, w) ∈ E
 - $\Leftrightarrow \frac{\text{some shortest } L_1 \text{-norm path not blocked}}{(\text{Note: there may be many})}$
 - ⇔ some xy-monotone orthogonal path not blocked

向下 イヨト イヨト

- Special rule 1: everything is on grid.
- Special rule 2: vertex-points block paths.

• Same idea, change what "seeing" means

• Was:
$$(v, w) \in E$$

- $\Leftrightarrow \text{ line segment } \overline{p_v p_w} \text{ not blocked by obstacles}$
- \Leftrightarrow shortest p_v - p_w -path not blocked

(where "shortest" means "in L_2 -norm")

• Now: *L*₁-norm (Manhattan-distance)

•
$$(v, w) \in E$$

- $\Leftrightarrow \frac{\text{some shortest } L_1 \text{-norm path not blocked}}{(\text{Note: there may be many})}$
- ⇔ some xy-monotone orthogonal path not blocked
- Special rule 1: everything is on grid.
- Special rule 2: vertex-points block paths.

Completely different model, results don't transfer.

- Bishnu et al. (see also poster):
 - Exists for all planar graphs in 2D.
 - Does not exist for all graphs in 2D.
 - Exists for all graphs in 3D.

- Bishnu et al. (see also poster):
 - Exists for all planar graphs in 2D.
 - Does not exist for all graphs in 2D.
 - Exists for all graphs in 3D.

- Bishnu et al. (see also poster):
 - Exists for all planar graphs in 2D.
 - Does not exist for all graphs in 2D.
 - Exists for all graphs in 3D.

• Bishnu et al. (see also poster):

- Exists for all planar graphs in 2D.
- Does not exist for all graphs in 2D.
- Exists for all graphs in 3D.
- New objective: how big is the grid?

• Bishnu et al. (see also poster):

- Exists for all planar graphs in 2D.
- Does not exist for all graphs in 2D.
- Exists for all graphs in 3D.
- New objective: how big is the grid?
- Bishnu et al.:
 - Planar graphs in 2D: $O(n^8)$ area
 - All graphs in 3D: $O(n^{22})$ volume

• Bishnu et al. (see also poster):

- Exists for all planar graphs in 2D.
- Does not exist for all graphs in 2D.
- Exists for all graphs in 3D.
- New objective: how big is the grid?
- Bishnu et al.:
 - Planar graphs in 2D: $O(n^8)$ area
 - All graphs in 3D: $O(n^{22})$ volume

• This paper:

- Planar graphs in 2D: $O(n^2)$ area
- All graphs in 3D: $O(n^3)$ volume

- Bishnu et al. (see also poster):
 - Exists for all planar graphs in 2D.
 - Does not exist for all graphs in 2D.
 - Exists for all graphs in 3D.
- New objective: how big is the grid?
- Bishnu et al.:
 - Planar graphs in 2D: $O(n^8)$ area
 - All graphs in 3D: $O(n^{22})$ volume

• This paper:

- Planar graphs in 2D: $O(n^2)$ area
- All graphs in 3D: $O(n^3)$ volume

- Bishnu et al. (see also poster):
 - Exists for all planar graphs in 2D.
 - Does not exist for all graphs in 2D.
 - Exists for all graphs in 3D.
- New objective: how big is the grid?
- Bishnu et al.:
 - Planar graphs in 2D: $O(n^8)$ area
 - All graphs in 3D: $O(n^{22})$ volume

• This paper:

- Planar graphs in 2D: $O(n^2)$ area
- All graphs in 3D: $O(n^3)$ volume

- Bishnu et al. (see also poster):
 - Exists for all planar graphs in 2D.
 - Does not exist for all graphs in 2D.
 - Exists for all graphs in 3D.
- New objective: how big is the grid?
- Bishnu et al.:
 - Planar graphs in 2D: $O(n^8)$ area
 - All graphs in 3D: $O(n^{22})$ volume

• This paper:

- Planar graphs in 2D: $O(n^2)$ area
- All graphs in 3D: $O(n^3)$ volume

イロト イヨト イヨト イヨト

• Recall special rule 2: Vertex-points block grid-paths.

∃ ⊳

- Recall special rule 2: Vertex-points block grid-paths.
- This was needed in our construction.

イロト イヨト イヨト イヨト

- Recall special rule 2: Vertex-points block grid-paths.
- This was needed in our construction.
- This feels artifical—can we drop it? (*Non-blocking grid-obstacle representation.*)

- < ∃ >

- Recall special rule 2: Vertex-points block grid-paths.
- This was needed in our construction.
- This feels artifical—can we drop it? (Non-blocking grid-obstacle representation.)

Open Problem

Does every planar graph have a non-blocking grid-obstacle representation?

Theorem

- Create HH-drawing [B., Kaufmann, Mutzel, 1998]
 - Vertices of A above x-axis
 - Vertices of *B* below *x*-axis
 - Edges have one bend on x-axis

Theorem

- Create HH-drawing [B., Kaufmann, Mutzel, 1998]
- Turn into visibility representation [B., GD'14]
 - Feasible since edges y-monotone
 - All x-coordinates unchanged

- Create HH-drawing [B., Kaufmann, Mutzel, 1998]
- Turn into visibility representation [B., GD'14]
- Interpret as grid, fill complement with obstacles.

- Create HH-drawing [B., Kaufmann, Mutzel, 1998]
- Turn into visibility representation [B., GD'14]
- Interpret as grid, fill complement with obstacles.
- Point for v: rightmost / leftmost point in box of v

- Create HH-drawing [B., Kaufmann, Mutzel, 1998]
- Turn into visibility representation [B., GD'14]
- Interpret as grid, fill complement with obstacles.
- Point for v: rightmost / leftmost point in box of v
- Argue: $(v, w) \in E \Leftrightarrow xy$ -monotone grid-path

(Picture shamelessly stolen from xkcd.com.)

(Creative Commons Attribution-NonCommercial 2.5 License.)

イロン イ部ン イヨン イヨン 三日

Grid-obstacle representations with connections to staircase guarding

Therese Biedl¹ Saeed Mehrabi²

¹University of Waterloo, *biedl@uwaterloo.ca*

²was at UW, now at Carleton University, mehrabi235@gmail.com

September 25, 2017

向下 イヨト イヨト

• Use non-blocking grid-obstacle representation of planar bipartite graph.

- Use non-blocking grid-obstacle representation of planar bipartite graph.
- Refine grid.

- Use non-blocking grid-obstacle representation of planar bipartite graph.
- Refine grid.
- Add *swirl* at every edge.

- Use non-blocking grid-obstacle representation of planar bipartite graph.
- Refine grid.
- Add *swirl* at every edge.
- Add vertex-squares.

- Use non-blocking grid-obstacle representation of planar bipartite graph.
- Refine grid.
- Add *swirl* at every edge.
- Add vertex-squares.
- Forget grid \Rightarrow polygon.

- Use non-blocking grid-obstacle representation of planar bipartite graph.
- Refine grid.
- Add *swirl* at every edge.
- Add vertex-squares.
- Forget grid \Rightarrow polygon.
- Staircase-guard it?
 - Need guard on left swirl-part.

- Use non-blocking grid-obstacle representation of planar bipartite graph.
- Refine grid.
- Add *swirl* at every edge.
- Add vertex-squares.
- Forget grid \Rightarrow polygon.
- Staircase-guard it?
 - Need guard on left swirl-part. (Does not see vertex-square.)

- Use non-blocking grid-obstacle representation of planar bipartite graph.
- Refine grid.
- Add *swirl* at every edge.
- Add vertex-squares.
- Forget grid \Rightarrow polygon.
- Staircase-guard it?
 - Need guard on left swirl-part. (Does not see vertex-square.)
 - 2*m* swirl-guards see all except vertex-squares.

- Use non-blocking grid-obstacle representation of planar bipartite graph.
- Refine grid.
- Add *swirl* at every edge.
- Add vertex-squares.
- Forget grid \Rightarrow polygon.
- Staircase-guard it?
 - Need guard on left swirl-part. (Does not see vertex-square.)
 - 2*m* swirl-guards see all except vertex-squares.
- Guard at v sees all squares of all neighbours of v.

- Use non-blocking grid-obstacle representation of planar bipartite graph.
- Refine grid.
- Add *swirl* at every edge.
- Add vertex-squares.
- Forget grid \Rightarrow polygon.
- Staircase-guard it?
 - Need guard on left swirl-part. (Does not see vertex-square.)
 - 2*m* swirl-guards see all except vertex-squares.
- Guard at v sees all squares of all neighbours of v.
- $\Rightarrow 2m + k$ guards suffice $\Leftrightarrow G$ has dominating set of size k.

Dominating set is NP-hard in planar bipartite graphs \Longrightarrow

Theorem

Staircase-guarding is NP-hard in orthogonal polygons with holes.

T.Biedl and S.Mehrabi Grid-obstacle representations and staircase guarding

• Some improvements to grid-obstacle representations.

- Some improvements to grid-obstacle representations.
- Cute application: NP-hardness of staircase-guarding.

- Some improvements to grid-obstacle representations.
- Cute application: NP-hardness of staircase-guarding.
- Open: Planar graphs have non-blocking grid-obstacle repr.?

- Some improvements to grid-obstacle representations.
- Cute application: NP-hardness of staircase-guarding.
- Open: Planar graphs have non-blocking grid-obstacle repr.?
- Open: Could we do $o(n) \times o(n)$ -grid for planar graphs?
 - Representation would have to "not look like planar drawing"

- Some improvements to grid-obstacle representations.
- Cute application: NP-hardness of staircase-guarding.
- Open: Planar graphs have non-blocking grid-obstacle repr.?
- Open: Could we do $o(n) \times o(n)$ -grid for planar graphs?
 - Representation would have to "not look like planar drawing"
- Open: Could we do o(n) obstacles in 2D?

< ∃⇒

æ