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In this presentation...

We will show that every 1-planar graph can be
realized as a visibility representation of parallel
rectangles in 3D



In this presentation...

We will show that every 1-planar graph can be
realized as a visibility representation of parallel
rectangles in 3D



2D Planar Visibility Representations

Bar Visibility Representation (BVR) of a planar graph G:
Vertices → Horizontal bars
Edges → Vertical unobstructed visibilities

Every planar graph admits a (weak) BVR
[Duchet et al. 1983, Thomassen 1984, Wismath 1985,

Rosenthiel & Tarjan 1986, Tamassia & Tollis 1986]
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2D Nonplanar Visibility Representations

Rectangle Visibility Representation (RVR) of a graph G:
Vertices → Axis-aligned rectangles
Edges → Horizontal/Vertical unobstructed visibilities

An n-vertex graph that admits an RVR has thickness at
most two and at most 6n− 20 edges [Hutchinson et al. 1999]
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2D Nonplanar Visibility Representations

Bar k-Visibility Representation (BkVR) of a graph G:
Vertices → Horizontal bars
Edges → Vertical visibilities that can traverse at most k bars

An n-vertex graph that admits a BkVR has thickness
O(k2) [Dean et al. 2007] and O(kn) edges [Dean et al. 2007,

Hartke et al. 2007].
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3D Visibility Representations

z-parallel Visibility Representation (ZPR) of a graph G:
Vertices → Rectangles with sides parallel to x- and y-axis
Edges → Unobstructed visibilities parallel to z-axis

K22 admits a ZPR [Bose et al. 1998]

while K51 does not admit any
ZPR [Štola 2009]
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In this presentation...

We will show that every 1-planar graph can be
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1-planar Graphs

A graph is 1-planar if it can be drawn with at most one
crossing per edge

A 1-planar graph has at most 4n− 8 edges (tight) [Bodendiek

et al. 1983; Pach and Tóth 1997]
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There are 1-planar graphs that do not admit any rectangle
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1-planar Graphs and Visibility Representations

There are 1-planar graphs that do not admit any rectangle
visibility representation [Biedl, Liotta, M. 2016]

Every 1-planar graph admits a bar 1-visibility
representation [Brandenburg 2014 & Evans et al. 2014]

Question: Can we realize every 1-planar graph as a
visibility representation of rectangles with unobstructed
visibilities by exploiting the 3rd dimension?



In this presentation...

Theorem 1 Every 1-planar graph G with n vertices admits
a ZPR γ in O(n3) volume. Also, if a 1-planar embedding of
G is given as part of the input, then γ can be computed in
O(n) time.



In this presentation...

Theorem 1 Every 1-planar graph G with n vertices admits
a ZPR γ in O(n3) volume. Also, if a 1-planar embedding of
G is given as part of the input, then γ can be computed in
O(n) time.

The ZPR γ is 1-visible:
∃ a plane orthogonal to the rectangles of γ and whose
intersection with γ is a B1VR



Proof overview

Input: 1-plane graph G
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Proof overview

Input: 1-plane graph G

Step 1: Compute a B1VR γ1
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Proof overview

Input: 1-plane graph G

Step 1: Compute a B1VR γ1
Step 2: Transform every bar into a rectangle by computing
the y-coordinates of top and bottom sides, s.t. each
visibility that traverses a bar in γ1 can be moved upward or
downard so to avoid the obstacle
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Proof overview

Input: 1-plane graph G

Step 1: Compute a B1VR γ1
Step 2: Transform every bar into a rectangle by computing
the y-coordinates of top and bottom sides, s.t. each
visibility that traverses a bar in γ1 can be moved upward or
downard so to avoid the obstacle

Output: 1-visibile ZPR γ of G



Step 1: B1VR
Step 1: We compute a B1VR γ1 of G by applying
Brandenburg’s linear-time algorithm [Brandenburg 2014]

1.a A 1-plane multigraph G′ = (V,E′ ⊇ E) is computed
from G such that the four end-vertices of each pair of
crossing edges of G′ induce a kite

G′G
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Step 1: B1VR

Step 1: We compute a B1VR γ1 of G by applying
Brandenburg’s linear-time algorithm [Brandenburg 2014]

1.b Remove all pairs of crossing edges from G′ and
obtain a planar (multi)graph P
Apply the algorithm by Tamassia and Tollis [Tamassia-Tollis

1986] to compute a BVR of P

P
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Step 1: B1VR

Step 1: We compute a B1VR γ1 of G by applying
Brandenburg’s linear-time algorithm [Brandenburg 2014]

1.c Reinsert all pairs of crossing edges by extending some
bars so to introduce new visibilities
The introduced visibilities traverse at most one bar each
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Step 2: 1-visible ZPR

Step 2: Transform the B1VR γ1 into the ZPR γ

Note: All the visibilities of γ1 that do not traverse any
bar does not need to be moved
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Step 2: 1-visible ZPR

Idea: To realize the other visibilities we set the
y-coordinates of the rectangles by using two orientations
of (a subset of) the edges of P , called D1 - for the top
sides - and D2 - for the bottom sides
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Step 2: 1-visible ZPR

Idea: An edge oriented from u to v in D1 (D2) encodes
that the top side (bottom side) of u will have
y-coordinate greater (smaller) than the one of v

D1
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Step 2: 1-visible ZPR

2a: Process the edges of each kite and apply a set of
rules to obtain D1 and D2
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Step 2: 1-visible ZPR

2a: Process the edges of each kite and apply a set of
rules to obtain D1 and D2

d

o

u

v

d

o

u

v

o

u v

d

o

u

v

d

o

u

v

d

o

u

v
d

Step 2: Transform the B1VR γ1 into the ZPR γ



Step 2: 1-visible ZPR

To prove: No edge directed twice, and both D1 and D2

are acyclic
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Step 2: 1-visible ZPR

To prove: No edge directed twice, and both D1 and D2

are acyclic
Assuming D1 or D2 has a cycle, one can contradict the
rules used to construct D1 or D2.

Black edges
oriented from the
bottommost to the
topmost endpoint
by looking at the
B1VR

u

Step 2: Transform the B1VR γ1 into the ZPR γ



Step 2: 1-visible ZPR

To prove: No edge directed twice, and both D1 and D2

are acyclic
Assuming D1 or D2 has a cycle, one can contradict the
rules used to construct D1 or D2.

kite

Wrong orientation
in D1...

Black edges
oriented from the
bottommost to the
topmost endpoint
in the B1VR
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Step 2: Transform the B1VR γ1 into the ZPR γ



Step 2: 1-visible ZPR

2b. Compute a topological ordering of both D1 and D2

(each ordering might consists of several components).
This gives two total orderings (after possible
concatenations) σ1 and σ2 of the vertices of G
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Step 2: 1-visible ZPR

2c. Set the y-coordinate of the top side of the rectangle
representing the i-th vertex in σ1 equal to n− i+ 1
Set the y-coordinate of the bottom side of the rectangle
representing the i-th vertex in σ2 equal to i− n− 1

σ1 = {c, a, h, f, b, e, g, d}
σ2 = {h, c, g, e, b, f, a, d}
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End!

Output: A 1-visible ZPR γ of G

Each step takes O(n) time
The height of each rectangle is at most 2n, hence γ
takes O(n)×O(n)×O(n) volume



Open problems

1. The algorithm by Brandenburg can be adjusted to
compute B1VRs of optimal 2-planar graphs [Bekos et al.

2017]. Does every 2-planar graph admit a 1-visible ZPR?
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