3D Visibility Representations of 1-planar Graphs

Patrizio Angelini¹, Michael A. Bekos¹, Michael Kaufmann¹, and <u>Fabrizio Montecchiani²</u>

> ¹University of Tübingen, Germany ²University of Perugia, Italy

GD 2017, September 25-27, 2017, Boston

In this presentation...

We will show that every 1-planar graph can be realized as a visibility representation of parallel rectangles in 3D

In this presentation...

We will show that every 1-planar graph can be realized as a **visibility representation** of parallel rectangles in 3D

2D Planar Visibility Representations Bar Visibility Representation (BVR) of a planar graph G: Vertices \rightarrow Horizontal bars Edges \rightarrow Vertical unobstructed visibilities

Every planar graph admits a (weak) BVR [Duchet et al. 1983, Thomassen 1984, Wismath 1985, Rosenthiel & Tarjan 1986, Tamassia & Tollis 1986]

2D Nonplanar Visibility Representations

Rectangle Visibility Representation (RVR) of a graph G: Vertices \rightarrow Axis-aligned rectangles Edges \rightarrow Horizontal/Vertical unobstructed visibilities

An *n*-vertex graph that admits an RVR has thickness at most two and at most 6n - 20 edges [Hutchinson et al. 1999]

2D Nonplanar Visibility Representations

Bar k-Visibility Representation (BkVR) of a graph G: Vertices \rightarrow Horizontal bars

Edges \rightarrow Vertical visibilities that can traverse at most k bars

An *n*-vertex graph that admits a B*k*VR has thickness $O(k^2)$ [Dean et al. 2007] and O(kn) edges [Dean et al. 2007, Hartke et al. 2007].

3D Visibility Representations

z-parallel Visibility Representation (ZPR) of a graph *G*: Vertices \rightarrow Rectangles with sides parallel to *x*- and *y*-axis Edges \rightarrow Unobstructed visibilities parallel to *z*-axis

In this presentation...

We will show that every 1-planar graph can be realized as a *z*-parallel visibility representation

In this presentation...

We will show that every 1-planar graph can be realized as a z-parallel visibility representation

1-planar Graphs

A graph is 1-planar if it can be drawn with at most one crossing per edge

A 1-planar graph has at most 4n - 8 edges (tight) [Bodendiek et al. 1983; Pach and Tóth 1997]

1-planar Graphs and Visibility Representations

There are 1-planar graphs that do not admit any rectangle visibility representation [Biedl, Liotta, M. 2016]

1-planar Graphs and Visibility Representations

There are 1-planar graphs that do not admit any rectangle visibility representation [Biedl, Liotta, M. 2016]

Every 1-planar graph admits a bar 1-visibility representation [Brandenburg 2014 & Evans et al. 2014]

1-planar Graphs and Visibility Representations

There are 1-planar graphs that do not admit any rectangle visibility representation [Biedl, Liotta, M. 2016]

Every 1-planar graph admits a bar 1-visibility representation [Brandenburg 2014 & Evans et al. 2014]

Question: Can we realize every 1-planar graph as a visibility representation of rectangles with unobstructed visibilities by exploiting the 3rd dimension?

In this presentation...

Theorem 1 Every 1-planar graph G with n vertices admits a ZPR γ in $O(n^3)$ volume. Also, if a 1-planar embedding of G is given as part of the input, then γ can be computed in O(n) time.

In this presentation...

Theorem 1 Every 1-planar graph G with n vertices admits a ZPR γ in $O(n^3)$ volume. Also, if a 1-planar embedding of G is given as part of the input, then γ can be computed in O(n) time.

The ZPR γ is 1-visible:

 \exists a plane orthogonal to the rectangles of γ and whose intersection with γ is a B1VR

Input: 1-plane graph G

Input: 1-plane graph G**Step 1:** Compute a B1VR γ_1

Input: 1-plane graph G **Step 1:** Compute a B1VR γ_1 **Step 2:** Transform every bar into a rectangle by computing the y-coordinates of top and bottom sides, s.t. each visibility that traverses a bar in γ_1 can be moved upward or downard so to avoid the obstacle

Input: 1-plane graph G **Step 1:** Compute a B1VR γ_1 **Step 2:** Transform every bar into a rectangle by computing the y-coordinates of top and bottom sides, s.t. each visibility that traverses a bar in γ_1 can be moved upward or downard so to avoid the obstacle

Output: 1-visibile ZPR γ of G

Step 1: B1VR

Step 1: We compute a B1VR γ_1 of G by applying Brandenburg's linear-time algorithm [Brandenburg 2014]

1.a A 1-plane multigraph $G' = (V, E' \supseteq E)$ is computed from G such that the four end-vertices of each pair of crossing edges of G' induce a kite

Step 1: B1VR

Step 1: We compute a B1VR γ_1 of G by applying Brandenburg's linear-time algorithm [Brandenburg 2014]

1.b Remove all pairs of crossing edges from G' and obtain a planar (multi)graph PApply the algorithm by Tamassia and Tollis [Tamassia-Tollis 1986] to compute a BVR of P

Step 1: B1VR

Step 1: We compute a B1VR γ_1 of G by applying Brandenburg's linear-time algorithm [Brandenburg 2014]

 ${\bf 1.c}$ Reinsert all pairs of crossing edges by extending some bars so to introduce new visibilities

The introduced visibilities traverse at most one bar each

Step 2: Transform the B1VR γ_1 into the ZPR γ

Note: All the visibilities of γ_1 that do not traverse any bar does not need to be moved

Step 2: Transform the B1VR γ_1 into the ZPR γ

Idea: To realize the other visibilities we set the y-coordinates of the rectangles by using two orientations of (a subset of) the edges of P, called D_1 - for the top sides - and D_2 - for the bottom sides

Step 2: Transform the B1VR γ_1 into the ZPR γ

Idea: An edge oriented from u to v in D_1 (D_2) encodes that the top side (bottom side) of u will have y-coordinate greater (smaller) than the one of v

Step 2: Transform the B1VR γ_1 into the ZPR γ

2a: Process the edges of each kite and apply a set of rules to obtain D_1 and D_2

Step 2: Transform the B1VR γ_1 into the ZPR γ

2a: Process the edges of each kite and apply a set of rules to obtain D_1 and D_2

Step 2: Transform the B1VR γ_1 into the ZPR γ

To prove: No edge directed twice, and both D_1 and D_2 are acyclic

Step 2: Transform the B1VR γ_1 into the ZPR γ

- **To prove:** No edge directed twice, and both D_1 and D_2 are acyclic
- Assuming D_1 or D_2 has a cycle, one can contradict the rules used to construct D_1 or D_2 .

Step 2: Transform the B1VR γ_1 into the ZPR γ

To prove: No edge directed twice, and both D_1 and D_2 are acyclic

Assuming D_1 or D_2 has a cycle, one can contradict the rules used to construct D_1 or D_2 .

Step 2: Transform the B1VR γ_1 into the ZPR γ

2b. Compute a topological ordering of both D_1 and D_2 (each ordering might consists of several components). This gives two total orderings (after possible concatenations) σ_1 and σ_2 of the vertices of G

$$\sigma_1 = \{c, a, h, f, b, e, g, d\}$$

$$\sigma_2 = \{h, c, g, e, b, f, a, d\}$$

Step 2: Transform the B1VR γ_1 into the ZPR γ

2c. Set the *y*-coordinate of the top side of the rectangle representing the *i*-th vertex in σ_1 equal to n - i + 1Set the *y*-coordinate of the bottom side of the rectangle representing the *i*-th vertex in σ_2 equal to i - n - 1

End!

Output: A 1-visible ZPR γ of G

Each step takes O(n) time The height of each rectangle is at most 2n, hence γ takes $O(n) \times O(n) \times O(n)$ volume

1. The algorithm by Brandenburg can be adjusted to compute B1VRs of optimal 2-planar graphs [Bekos et al. 2017]. Does every 2-planar graph admit a 1-visible ZPR?

1. The algorithm by Brandenburg can be adjusted to compute B1VRs of optimal 2-planar graphs [Bekos et al. 2017]. Does every 2-planar graph admit a 1-visible ZPR?

2. Even more: can we generalize our result so to prove that every graph admitting a B1VR also admits a 1-visible ZPR?

1. The algorithm by Brandenburg can be adjusted to compute B1VRs of optimal 2-planar graphs [Bekos et al. 2017]. Does every 2-planar graph admit a 1-visible ZPR?

2. Even more: can we generalize our result so to prove that every graph admitting a B1VR also admits a 1-visible ZPR?

3. Does every 1-planar graph admit a 2.5D box visibility representation (i.e., vertices are axis-aligned boxes whose bottom faces lie on a same plane, and visibilities are both vertical and horizontal)?

1. The algorithm by Brandenburg can be adjusted to compute B1VRs of optimal 2-planar graphs [Bekos et al. 2017]. Does every 2-planar graph admit a 1-visible ZPR?

2. Even more: can we generalize our result so to prove that every graph admitting a B1VR also admits a 1-visible ZPR?

3. Does every 1-planar graph admit a 2.5D box visibility representation (i.e., vertices are axis-aligned boxes whose bottom faces lie on a same plane, and visibilities are both vertical and horizontal)?

THANKS FOR YOUR ATTENTION!