3D Visibility Representations of 1-planar Graphs

Patrizio Angelini ${ }^{1}$, Michael A. Bekos ${ }^{1}$,
Michael Kaufmann ${ }^{1}$, and Fabrizio Montecchiani ${ }^{2}$
${ }^{1}$ University of Tübingen, Germany
${ }^{2}$ University of Perugia, Italy

GD 2017, September 25-27, 2017, Boston

In this presentation...

We will show that every 1-planar graph can be realized as a visibility representation of parallel rectangles in 3D

In this presentation...

We will show that every 1-planar graph can be realized as a visibility representation of parallel rectangles in 3D

2D Planar Visibility Representations

Bar Visibility Representation (BVR) of a planar graph G :
Vertices \rightarrow Horizontal bars
Edges \rightarrow Vertical unobstructed visibilities

Every planar graph admits a (weak) BVR
[Duchet et al. 1983, Thomassen 1984, Wismath 1985,
Rosenthiel \& Tarjan 1986, Tamassia \& Tollis 1986]

2D Nonplanar Visibility Representations

Rectangle Visibility Representation (RVR) of a graph G : Vertices \rightarrow Axis-aligned rectangles
Edges \rightarrow Horizontal/Vertical unobstructed visibilities

An n-vertex graph that admits an RVR has thickness at most two and at most $6 n-20$ edges [Hutchinson et al. 1999]

2D Nonplanar Visibility Representations

Bar k-Visibility Representation ($\mathrm{B} k \mathrm{VR}$) of a graph G :
Vertices \rightarrow Horizontal bars
Edges \rightarrow Vertical visibilities that can traverse at most k bars

An n-vertex graph that admits a $\mathrm{B} k \mathrm{VR}$ has thickness $O\left(k^{2}\right)$ [Dean et al. 2007] and $O(k n)$ edges [Dean et al. 2007, Hartke et al. 2007].

3D Visibility Representations

z-parallel Visibility Representation (ZPR) of a graph G :
Vertices \rightarrow Rectangles with sides parallel to x - and y-axis Edges \rightarrow Unobstructed visibilities parallel to z-axis

K_{22} admits a ZPR [Bose et al. 1998] while K_{51} does not admit any ZPR [Štola 2009]

In this presentation...

We will show that every 1-planar graph can be realized as a z-parallel visibility representation

In this presentation...

We will show that every 1-planar graph can be realized as a z-parallel visibility representation

1-planar Graphs

A graph is 1-planar if it can be drawn with at most one crossing per edge

A 1-planar graph has at most $4 n-8$ edges (tight) [Bodendiek et al. 1983; Pach and Tóth 1997]

1-planar Graphs and Visibility Representations

There are 1-planar graphs that do not admit any rectangle visibility representation [Biedl, Liotta, M. 2016]

1-planar Graphs and Visibility Representations

There are 1-planar graphs that do not admit any rectangle visibility representation [Biedl, Liotta, M. 2016]

Every 1-planar graph admits a bar 1-visibility representation [Brandenburg 2014 \& Evans et al. 2014]

1-planar Graphs and Visibility Representations

There are 1-planar graphs that do not admit any rectangle visibility representation [Biedl, Liotta, M. 2016]

Every 1-planar graph admits a bar 1-visibility representation [Brandenburg 2014 \& Evans et al. 2014]

Question: Can we realize every 1-planar graph as a visibility representation of rectangles with unobstructed visibilities by exploiting the 3rd dimension?

In this presentation...

Theorem 1 Every 1-planar graph G with n vertices admits a $Z P R \gamma$ in $O\left(n^{3}\right)$ volume. Also, if a 1-planar embedding of G is given as part of the input, then γ can be computed in $O(n)$ time.

In this presentation...

Theorem 1 Every 1-planar graph G with n vertices admits a $Z P R \gamma$ in $O\left(n^{3}\right)$ volume. Also, if a 1-planar embedding of G is given as part of the input, then γ can be computed in $O(n)$ time.
The ZPR γ is 1 -visible:
\exists a plane orthogonal to the rectangles of γ and whose intersection with γ is a B1VR

Proof overview

Input: 1-plane graph G

Proof overview

Input: 1-plane graph G
Step 1: Compute a B1VR γ_{1}

Proof overview

Input: 1-plane graph G
Step 1: Compute a B1VR γ_{1}
Step 2: Transform every bar into a rectangle by computing the y-coordinates of top and bottom sides, s.t. each visibility that traverses a bar in γ_{1} can be moved upward or downard so to avoid the obstacle

Proof overview

Input: 1-plane graph G
Step 1: Compute a B1VR γ_{1}
Step 2: Transform every bar into a rectangle by computing the y-coordinates of top and bottom sides, s.t. each visibility that traverses a bar in γ_{1} can be moved upward or downard so to avoid the obstacle
Output: 1-visibile ZPR γ of G

Step 1: B1VR

Step 1: We compute a B1VR γ_{1} of G by applying Brandenburg's linear-time algorithm [Brandenburg 2014]
1.a A 1-plane multigraph $G^{\prime}=\left(V, E^{\prime} \supseteq E\right)$ is computed from G such that the four end-vertices of each pair of crossing edges of G^{\prime} induce a kite

Step 1: B1VR

Step 1: We compute a B1VR γ_{1} of G by applying Brandenburg's linear-time algorithm [Brandenburg 2014]
1.b Remove all pairs of crossing edges from G^{\prime} and obtain a planar (multi)graph P
Apply the algorithm by Tamassia and Tollis [Tamassia-Tollis 1986] to compute a BVR of P

Step 1: B1VR

Step 1: We compute a B1VR γ_{1} of G by applying Brandenburg's linear-time algorithm [Brandenburg 2014]
1.c Reinsert all pairs of crossing edges by extending some bars so to introduce new visibilities
The introduced visibilities traverse at most one bar each

Step 2: 1-visible ZPR

Step 2: Transform the B1VR γ_{1} into the ZPR γ
Note: All the visibilities of γ_{1} that do not traverse any bar does not need to be moved

Step 2: 1-visible ZPR

Step 2: Transform the B1VR γ_{1} into the ZPR γ Idea: To realize the other visibilities we set the y-coordinates of the rectangles by using two orientations of (a subset of) the edges of P, called D_{1} - for the top sides - and D_{2} - for the bottom sides

Step 2: 1-visible ZPR

Step 2: Transform the B1VR γ_{1} into the ZPR γ
Idea: An edge oriented from u to v in $D_{1}\left(D_{2}\right)$ encodes that the top side (bottom side) of u will have y-coordinate greater (smaller) than the one of v

Step 2: 1-visible ZPR

Step 2: Transform the B1VR γ_{1} into the ZPR γ
2a: Process the edges of each kite and apply a set of rules to obtain D_{1} and D_{2}

Step 2: 1-visible ZPR

Step 2: Transform the B1VR γ_{1} into the ZPR γ
2a: Process the edges of each kite and apply a set of rules to obtain D_{1} and D_{2}

Step 2: 1-visible ZPR

Step 2: Transform the B1VR γ_{1} into the ZPR γ
To prove: No edge directed twice, and both D_{1} and D_{2} are acyclic

Step 2: 1-visible ZPR

Step 2: Transform the B1VR γ_{1} into the ZPR γ
To prove: No edge directed twice, and both D_{1} and D_{2} are acyclic Assuming D_{1} or D_{2} has a cycle, one can contradict the rules used to construct D_{1} or D_{2}.

Black edges
oriented from the bottommost to the topmost endpoint by looking at the B1VR

Step 2: 1-visible ZPR

Step 2: Transform the B1VR γ_{1} into the ZPR γ
To prove: No edge directed twice, and both D_{1} and D_{2} are acyclic Assuming D_{1} or D_{2} has a cycle, one can contradict the rules used to construct D_{1} or D_{2}.

Black edges
oriented from the bottommost to the topmost endpoint in the B1VR

Step 2: 1-visible ZPR

Step 2: Transform the B1VR γ_{1} into the ZPR γ
$\mathbf{2 b}$. Compute a topological ordering of both D_{1} and D_{2} (each ordering might consists of several components). This gives two total orderings (after possible concatenations) σ_{1} and σ_{2} of the vertices of G

$$
\begin{aligned}
\sigma_{1} & =\{c, a, h, f, b, e, g, d\} \\
\sigma_{2} & =\{h, c, g, e, b, f, a, d\}
\end{aligned}
$$

Step 2: 1-visible ZPR

Step 2: Transform the B1VR γ_{1} into the ZPR γ
2c. Set the y-coordinate of the top side of the rectangle representing the i-th vertex in σ_{1} equal to $n-i+1$ Set the y-coordinate of the bottom side of the rectangle representing the i-th vertex in σ_{2} equal to $i-n-1$
$\sigma_{1}=\{c, a, h, f, b, e, g, d\}$
$\sigma_{2}=\{h, c, g, e, b, f, a, d\}$
$\operatorname{top}\left(\sigma_{1}(2)=a\right)=7$
$\operatorname{bottom}\left(\sigma_{2}(7)=a\right)=-2$.

SIDE VIEW

End!

Output: A 1-visible ZPR γ of G
Each step takes $O(n)$ time The height of each rectangle is at most $2 n$, hence γ takes $O(n) \times O(n) \times O(n)$ volume

Open problems

1. The algorithm by Brandenburg can be adjusted to compute B1VRs of optimal 2-planar graphs [Bekos et al. 2017]. Does every 2 -planar graph admit a 1 -visible ZPR?

Open problems

1. The algorithm by Brandenburg can be adjusted to compute B1VRs of optimal 2-planar graphs [Bekos et al. 2017]. Does every 2 -planar graph admit a 1 -visible ZPR?
2. Even more: can we generalize our result so to prove that every graph admitting a B1VR also admits a 1 -visible ZPR?

Open problems

1. The algorithm by Brandenburg can be adjusted to compute B1VRs of optimal 2-planar graphs [Bekos et al. 2017]. Does every 2 -planar graph admit a 1 -visible ZPR?
2. Even more: can we generalize our result so to prove that every graph admitting a B1VR also admits a 1 -visible ZPR?
3. Does every 1-planar graph admit a 2.5 D box visibility representation (i.e., vertices are axis-aligned boxes whose bottom faces lie on a same plane, and visibilities are both vertical and horizontal)?

Open problems

1. The algorithm by Brandenburg can be adjusted to compute B1VRs of optimal 2-planar graphs [Bekos et al. 2017]. Does every 2 -planar graph admit a 1 -visible ZPR?
2. Even more: can we generalize our result so to prove that every graph admitting a B1VR also admits a 1 -visible ZPR?
3. Does every 1-planar graph admit a 2.5 D box visibility representation (i.e., vertices are axis-aligned boxes whose bottom faces lie on a same plane, and visibilities are both vertical and horizontal)?

THANKS FOR YOUR ATTENTION!

