UNIVERSITY of HAWAI'I

Reconstructing Generalized Staircase Polygons with Uniform Step Length

Nodari Sitchinava and Darren Strash
GD 2017 | Sept. 25, 2017

Department of Computer Science Colgate University

u sees v

Visibility graphs

Given a polygon P, we construct its visibility graph G_{P} as follows:

- vertex v in $G_{P} \leftrightarrow v$ is a vertex on P's boundary.
- edge $(u, v) \leftrightarrow u$ sees v. (uv does not intersect exterior of $P)$

Visibility graphs

Given a polygon P, we construct its visibility graph G_{P} as follows:

- vertex v in $G_{P} \leftrightarrow v$ is a vertex on P's boundary.
- edge $(u, v) \leftrightarrow u$ sees v. (uv does not intersect exterior of P)

Visibility graphs

Given a polygon P, we construct its visibility graph G_{P} as follows:

- vertex v in $G_{P} \leftrightarrow v$ is a vertex on P's boundary.
- edge $(u, v) \leftrightarrow u$ sees v. (uv does not intersect exterior of $P)$

Visibility graphs

Given a polygon P, we construct its visibility graph G_{P} as follows:

- vertex v in $G_{P} \leftrightarrow v$ is a vertex on P's boundary.
- edge $(u, v) \leftrightarrow u$ sees v. (uv does not intersect exterior of $P)$

Can be computed in $O(n \log n+m)$ time [Ghosh \& Mount, 1991]

What about the reverse?

Recognition and reconstruction

Input: A graph G:

- Recognition Problem: Is G the visibility graph of some polygon?

- Reconstruction Problem: Give a polygon P, which has G has its visibility graph.

Quick: Known Results

- Recognition is in PSPACE. [Everett, 1994]
- Reconstruction complexity is open
- Special cases: limited visibility due to reflex chains

tower

[Choi et al., 1995]

Quick: Known Results

- Recognition is in PSPACE. [Everett, 1994]
- Reconstruction complexity is open
- Special cases: limited visibility due to reflex chains
- Orthogonal polygons?

Alternative visibility definitions

[Abello \& Eğecioğlu, 1993]

Recognition

[Abello et al., 1995]

Uniform-Step Length Polygons

The only reconstruction result is for staircase polygons with uniform length [Abello \& Eğecioğlu, 1993]

All "steps" have same length

Uniform-Step Length Polygons

The only reconstruction result is for staircase polygons with uniform length [Abello \& Eğecioğlu, 1993]

Can we efficiently reconstruct polygons with more staircases?
All "steps" have same length

Our Results

Uniform-length orthogonally convex polygons can be reconstructed $O\left(n^{2} m\right)$ time. (n vertices, m edges.)

unit-length orthogonally convex

Our Results

Histogram reconstruction is fixed parameter tractable on the number of tabs k, with time $O\left(n^{2} m+(k-2)!2^{k-2}(n \log n+m)\right)$.

uniform-length histogram

Simplicial vertices and edges

Maximal clique in $G_{P} \leftrightarrow$ maximal convex subpolygon on vertices of P.

- Staircase polygons have simplicial vertices

Simplicial vertices and edges

Maximal clique in $G_{P} \leftrightarrow$ maximal convex subpolygon on vertices of P.

- Staircase polygons have simplicial vertices

none are simplicial
- No simplicial vertices? \rightarrow we need new techniques

Simplicial vertices and edges

Maximal clique in $G_{P} \leftrightarrow$ maximal convex subpolygon on vertices of P.

- Staircase polygons have simplicial vertices

none are simplicial
- No simplicial vertices? \rightarrow we need new techniques
- Idea: Evaluate edges in only one maximal clique

\rightarrow 1-simplicial edges
\rightarrow identify convex-convex boundary edges

1-simplicial edges

Most expensive operation is testing each edge for membership in exactly 1 maximal clique.

1-simplicial edges

Most expensive operation is testing each edge for membership in exactly 1 maximal clique.

2 Steps:
\rightarrow for (u, v), find common neighborhood $O(n)$ time

1-simplicial edges

Most expensive operation is testing each edge for membership in exactly 1 maximal clique.

2 Steps:

\rightarrow for (u, v), find common neighborhood $O(n)$ time

\rightarrow Test if $N(u) \cap N(v)$ is a clique in $O\left(n^{2}\right)$ time
For all m edges, this takes $O\left(n^{2} m\right)$ total time.

Convex case: the algorithm

Step 0: Determine convex and reflex vertices.

Convex case: the algorithm

Step 0: Determine convex and reflex vertices.

Convex case: the algorithm

Step 0: Determine convex and reflex vertices.

Step 1: Find tab edges

Convex case: the algorithm

Step 0: Determine convex and reflex vertices.
topmost
Step 1: Find tab edges

Step 2: Choose one to be the topmost

Convex case: the algorithm

Step 0: Determine convex and reflex vertices.
topmost
Step 1: Find tab edges

Step 2: Choose one to be the topmost

Step 3: Determine vertices on "short" staircases.

Convex case: the algorithm

Step 0: Determine convex and reflex vertices.

> topmost

Step 1: Find tab edges

Step 2: Choose one to be the topmost

Step 3: Determine vertices on "short" staircases.

Step 4: Assign remaining vertices to "long" staircases

Convex case: the algorithm

Step 0: Determine convex and reflex vertices.

Step 1: Find tab edges

Step 2: Choose one to be the topmost

Step 3: Determine vertices on "short" staircases.

Step 4: Assign remaining vertices to "long" staircases

Step 5: Orient \& construct the boundary

Convex/Reflex Vertices

Maximal clique in $G_{P} \leftrightarrow$ maximal convex subpolygon on vertices of P.

Convex/Reflex Vertices

Maximal clique in $G_{P} \leftrightarrow$ maximal convex subpolygon on vertices of P.

Convex/Reflex Vertices

Maximal clique in $G_{P} \leftrightarrow$ maximal convex subpolygon on vertices of P.

Convex/Reflex Vertices

Maximal clique in $G_{P} \leftrightarrow$ maximal convex subpolygon on vertices of P.

Structural lemma:

Every convex vertex u has a convex neighbor v, such that (u, v) is in one maximal clique.
and
Edges incident to a reflex vertex are in two or more maximal cliques

Convex/Reflex Vertices

Maximal clique in $G_{P} \leftrightarrow$ maximal convex subpolygon on vertices of P.

Structural lemma:

Every convex vertex u has a convex neighbor v, such that (u, v) is in one maximal clique.
and
Edges incident to a reflex vertex are in two or more maximal cliques

Convex/Reflex Vertices

Maximal clique in $G_{P} \leftrightarrow$ maximal convex subpolygon on vertices of P.

Structural lemma:

Every convex vertex u has a convex neighbor v, such that (u, v) is in one maximal clique.
and
Edges incident to a reflex vertex are in two or more maximal cliques

Now Simple:

Compute all convex vertices by computing all edges contained in exactly one maximal clique.

Initial staircase reconstruction

Elementary clique:

A maximal clique containing 3 convex vertices*.

Elementary cliques can be ordered, starting from a tab.

Initial staircase reconstruction

Elementary clique:

A maximal clique containing 3 convex vertices*.

Elementary cliques can be ordered, starting from a tab.
C_{i} shares 3 reflex vertices with C_{i-1}

\rightarrow Orders the clique vertices along some staircase.

Filling in remaining staircases

We know some vertices...

But some vertices remain after looking at all elementary cliques.

Filling in remaining staircases

We know some vertices..

But some vertices remain after looking at all elementary cliques.

Construct via "rectangular" maximal cliques from known convex vertices to unknown convex vertices.

Filling in remaining staircases

We know some vertices..

But some vertices remain after looking at all elementary cliques.

Construct via "rectangular" maximal cliques from known convex vertices to unknown convex vertices.

Filling in remaining staircases

We know some vertices...

But some vertices remain after looking at all elementary cliques.

Construct via "rectangular" maximal cliques from known convex vertices to unknown convex vertices.

Filling in remaining staircases

We know some vertices...

But some vertices remain after looking at all elementary cliques.

Construct via "rectangular" maximal cliques from known convex vertices to unknown convex vertices.

Filling in remaining staircases

We know some vertices...

But some vertices remain after looking at all elementary cliques.

Construct via "rectangular" maximal cliques from known convex vertices to unknown convex vertices.

Filling in remaining staircases

We know some vertices..

But some vertices remain after looking at all elementary cliques.

Construct via "rectangular" maximal cliques from known convex vertices to unknown convex vertices.

Gives us all remaining vertices

Histograms: high-level algorithm

Histograms: high-level algorithm

Step 1: Determine tabs

Histograms: high-level algorithm

Step 1: Determine tabs

Step 2: Remove and repeat

Histograms: high-level algorithm

Step 1: Determine tabs

Step 2: Remove and repeat

Histograms: high-level algorithm

Step 1: Determine tabs

Step 2: Remove and repeat

Step 3: Construct a contract tree of all rectangles

Histograms: high-level algorithm

Step 1: Determine tabs

Step 2: Remove and repeat

Step 3: Construct a contract tree of all rectangles

Step 4: Order the tree to construct the polygon

Histograms: high-level algorithm

Step 1: Determine tabs

Step 2: Remove and repeat

Step 3: Construct a contract tree of all rectangles

Step 4: Order the tree to construct the polygon
\rightarrow generate polygon and check visibility graph

Histograms: Running time

An ordering of the leaves gives us an ordering of the tree

Histograms: Running time

An ordering of the leaves gives us an ordering of the tree
k leaves
\rightarrow and maps vertices to coordinates

Histograms: Running time

An ordering of the leaves gives us an ordering of the tree
k leaves
\rightarrow and maps vertices to coordinates

Each ordering gives a polygon

Histograms: Running time

An ordering of the leaves gives us an ordering of the tree k leaves
\rightarrow and maps vertices to coordinates

Each ordering gives a polygon

Compute its visibility graph and check for a match in $O(n \log n+m)$ time.

Histograms: Running time

An ordering of the leaves gives us an ordering of the tree k leaves
\rightarrow and maps vertices to coordinates

Each ordering gives a polygon

Compute its visibility graph and check for a match in $O(n \log n+m)$ time.

Seems like $O(k!(n \log n+m))$ time...

Histograms: Running time

But we also need to orient the tabs from left to right.
$\rightarrow 2^{k}$ possible orientations of leaves

Histograms: Running time

But we also need to orient the tabs from left to right.
$\rightarrow 2^{k}$ possible orientations of leaves

+ time to compute 1-simplicial edges

$\rightarrow O\left(n^{2} m+k!2^{k}(n \log n+m)\right)$ time.

Histograms: Running time

But we also need to orient the tabs from left to right.
$\rightarrow 2^{k}$ possible orientations of leaves

+ time to compute 1-simplicial edges

$\rightarrow O\left(n^{2} m+k!2^{k}(n \log n+m)\right)$ time.

Can fix the outer two paths, leaving us with only $(k-2)!2^{k-2}$ options $\rightarrow O\left(n^{2} m+(k-2)!2^{k-2}(n \log n+m)\right)$ time.

Histograms: Running time

But we also need to orient the tabs from left to right.
$\rightarrow 2^{k}$ possible orientations of leaves

+ time to compute 1-simplicial edges

$\rightarrow O\left(n^{2} m+k!2^{k}(n \log n+m)\right)$ time.

Can fix the outer two paths, leaving us with only $(k-2)!2^{k-2}$ options
$\rightarrow O\left(n^{2} m+(k-2)!2^{k-2}(n \log n+m)\right)$ time.
$\rightarrow O\left(n^{2} m\right)$ time for binary trees (recursively fix right/left spine)

Conclusion

Since we assign vertices to coordinates, we get recognition for free.
\rightarrow compute coordinates and check visibility graph

Conclusion

Since we assign vertices to coordinates, we get recognition for free.
\rightarrow compute coordinates and check visibility graph
General problem is still open...

- What about orthogonal polygons with fewer restrictions?
- Is it possible to reconstruct orthogonal convex fans in polynomial time?
- Are there more general classes of polygons that can be recognized / reconstructed?

Conclusion

Since we assign vertices to coordinates, we get recognition for free.
\rightarrow compute coordinates and check visibility graph

General problem is still open...

- What about orthogonal polygons with fewer restrictions?
- Is it possible to reconstruct orthogonal convex fans in polynomial time?
- Are there more general classes of polygons that can be recognized / reconstructed?

Thank You!

