

Reconstructing Generalized Staircase Polygons with Uniform Step Length

Nodari Sitchinava and Darren Strash

GD 2017 | Sept. 25, 2017

Department of Computer Science Colgate University

Given a polygon P, we construct its *visibility graph* G_P as follows:

- vertex v in $G_P \leftrightarrow v$ is a vertex on P's boundary.
- edge $(u, v) \leftrightarrow u$ sees v. (uv does not intersect exterior of P)

Given a polygon P, we construct its *visibility graph* G_P as follows:

- vertex v in $G_P \leftrightarrow v$ is a vertex on P's boundary.
- edge $(u, v) \leftrightarrow u$ sees v. (uv does not intersect exterior of P)

Given a polygon P, we construct its *visibility graph* G_P as follows:

- vertex v in $G_P \leftrightarrow v$ is a vertex on P's boundary.
- edge $(u, v) \leftrightarrow u$ sees v. (uv does not intersect exterior of P)

Given a polygon P, we construct its *visibility graph* G_P as follows:

- vertex v in $G_P \leftrightarrow v$ is a vertex on P's boundary.
- edge $(u, v) \leftrightarrow u$ sees v. (uv does not intersect exterior of P)

Can be computed in $O(n \log n + m)$ time [Ghosh & Mount, 1991]

What about the reverse?

Recognition and reconstruction

Input: A graph G:

• Recognition Problem: Is G the visibility graph of some polygon?

• Reconstruction Problem: Give a polygon P, which has G has its visibility graph.

Quick: Known Results

- Recognition is in PSPACE. [Everett, 1994]
- Reconstruction complexity is open.
- Special cases: limited visibility due to reflex chains

Quick: Known Results

- Recognition is in PSPACE. [Everett, 1994]
- Reconstruction complexity is open
- Special cases: limited visibility due to reflex chains
- Orthogonal polygons?

Uniform-Step Length Polygons

The *only* reconstruction result is for staircase polygons with uniform length [Abello & Eğecioğlu, 1993]

All "steps" have same length

Uniform-Step Length Polygons

The *only* reconstruction result is for staircase polygons with uniform length [Abello & Eğecioğlu, 1993]

Can we efficiently reconstruct polygons with more staircases?

All "steps" have same length

Our Results

Uniform-length orthogonally convex polygons can be reconstructed $O(n^2m)$ time. (n vertices, m edges.)

unit-length orthogonally convex

same edge lengths

edges change direction

Our Results

Histogram reconstruction is fixed parameter tractable on the number of tabs k, with time $O(n^2m + (k-2)!2^{k-2}(n \log n + m))$.

uniform-length histogram

Simplicial vertices and edges

Maximal clique in $G_P \leftrightarrow$ **maximal** convex subpolygon on vertices of P.

Staircase polygons have simplicial vertices

Simplicial vertices and edges

Maximal clique in $G_P \leftrightarrow$ **maximal** convex subpolygon on vertices of P.

Staircase polygons have simplicial vertices

No simplicial vertices? → we need new techniques

Simplicial vertices and edges

Maximal clique in $G_P \leftrightarrow$ **maximal** convex subpolygon on vertices of P.

Staircase polygons have simplicial vertices

No simplicial vertices? → we need new techniques

- Idea: Evaluate edges in only one maximal clique
 - → 1-simplicial edges
 - → identify convex-convex boundary edges

1-simplicial edges

Most expensive operation is testing each edge for membership in exactly 1 maximal clique.

1-simplicial edges

Most expensive operation is testing each edge for membership in exactly 1 maximal clique.

2 Steps:

 \rightarrow for (u, v), find common neighborhood O(n) time

1-simplicial edges

Most expensive operation is testing each edge for membership in exactly 1 maximal clique.

2 Steps:

 \rightarrow for (u, v), find common neighborhood O(n) time

 \rightarrow Test if $N(u) \cap N(v)$ is a clique in $O(n^2)$ time

For all m edges, this takes $O(n^2m)$ total time.

Step 0: Determine convex and reflex vertices.

Step 0: Determine convex and reflex vertices.

Step 0: Determine convex and reflex vertices.

Step 1: Find tab edges

Step 0: Determine convex and reflex vertices.

Step 1: Find tab edges

Step 2: Choose one to be the topmost

Step 0: Determine convex and reflex vertices.

Step 1: Find tab edges

Step 2: Choose one to be the topmost

Step 3: Determine vertices on "short" staircases.

topmost

Step 0: Determine convex and reflex vertices.

Step 1: Find tab edges

Step 2: Choose one to be the topmost

Step 3: Determine vertices on "short" staircases.

Step 4: Assign remaining vertices to "long" staircases

taircases

Step 0: Determine convex and reflex vertices.

Step 1: Find tab edges

Step 2: Choose one to be the topmost

Step 3: Determine vertices on "short" staircases.

Step 4: Assign remaining vertices to "long" staircases

Step 5: Orient & construct the boundary

Maximal clique in $G_P \leftrightarrow$ **maximal** convex subpolygon on vertices of P.

Maximal clique in $G_P \leftrightarrow$ **maximal** convex subpolygon on vertices of P.

Maximal clique in $G_P \leftrightarrow$ **maximal** convex subpolygon on vertices of P.

Maximal clique in $G_P \leftrightarrow$ **maximal** convex subpolygon on vertices of P.

Structural lemma:

Every convex vertex u has a convex neighbor v, such that (u, v) is in one maximal clique.

and

Edges incident to a reflex vertex are in two or more maximal cliques

Maximal clique in $G_P \leftrightarrow$ **maximal** convex subpolygon on vertices of P.

Structural lemma:

Every convex vertex u has a convex neighbor v, such that (u, v) is in one maximal clique.

and

Edges incident to a reflex vertex are in two or more maximal cliques

Maximal clique in $G_P \leftrightarrow$ **maximal** convex subpolygon on vertices of P.

Structural lemma:

Every convex vertex u has a convex neighbor v, such that (u, v) is in one maximal clique.

and

Edges incident to a reflex vertex are in two or more maximal cliques

Now Simple:

Compute all convex vertices by computing all edges contained in exactly one maximal clique.

Initial staircase reconstruction

Elementary clique:

A maximal clique containing 3 convex vertices*.

Elementary cliques can be **ordered**, starting from a tab.

Initial staircase reconstruction

Elementary clique:

A maximal clique containing 3 convex vertices*.

Elementary cliques can be **ordered**, starting from a tab.

 C_i shares 3 reflex vertices with C_{i-1}

→ Orders the clique vertices along **some** staircase.

Filling in remaining staircases

We know some vertices...

But some vertices remain after looking at all elementary cliques.

Filling in remaining staircases

We know some vertices...

But some vertices remain after looking at all elementary cliques.

Construct via "rectangular" maximal cliques from **known** convex vertices to **unknown** convex vertices.

Filling in remaining staircases

We know some vertices...

But some vertices remain after looking at all elementary cliques.

Construct via "rectangular" maximal cliques from **known** convex vertices to **unknown** convex vertices.

We know some vertices...

But some vertices remain after looking at all elementary cliques.

Construct via "rectangular" maximal cliques from **known** convex vertices to **unknown** convex vertices.

We know some vertices...

But some vertices remain after looking at all elementary cliques.

Construct via "rectangular" maximal cliques from **known** convex vertices to **unknown** convex vertices.

We know some vertices...

But some vertices remain after looking at all elementary cliques.

Construct via "rectangular" maximal cliques from **known** convex vertices to **unknown** convex vertices.

We know some vertices...

But some vertices remain after looking at all elementary cliques.

Construct via "rectangular" maximal cliques from **known** convex vertices to **unknown** convex vertices.

Gives us all remaining vertices

Step 1: Determine tabs

Step 1: Determine tabs

Step 2: Remove and repeat

Step 1: Determine tabs

Step 2: Remove and repeat

Step 1: Determine tabs

Step 2: Remove and repeat

Step 3: Construct a contract tree of all rectangles

Step 1: Determine tabs

Step 2: Remove and repeat

Step 3: Construct a contract tree of all rectangles

Step 4: Order the tree to construct the polygon

Step 1: Determine tabs

Step 2: Remove and repeat

Step 3: Construct a contract tree of all rectangles

Step 4: Order the tree to construct the polygon

→ generate polygon and check visibility graph

An ordering of the leaves gives us an ordering of the tree

k leaves

An ordering of the leaves gives us an ordering of the tree

k leaves

 \rightarrow and *maps* vertices to coordinates

An ordering of the leaves gives us an ordering of the tree

 \rightarrow and *maps* vertices to coordinates

Each ordering gives a polygon

An ordering of the leaves gives us an ordering of the tree

k leaves

 \rightarrow and *maps* vertices to coordinates

Each ordering gives a polygon

Compute its visibility graph and check for a match in $O(n \log n + m)$ time.

An ordering of the leaves gives us an ordering of the tree

k leaves

 \rightarrow and *maps* vertices to coordinates

Each ordering gives a polygon

Compute its visibility graph and check for a match in $O(n \log n + m)$ time.

Seems like $O(k!(n \log n + m))$ time...

But we also need to *orient* the tabs from left to right.

 \rightarrow 2^k possible orientations of leaves

But we also need to *orient* the tabs from left to right.

 \rightarrow 2^k possible orientations of leaves

+ time to compute 1-simplicial edges

But we also need to *orient* the tabs from left to right.

 \rightarrow 2^k possible orientations of leaves

+ time to compute 1-simplicial edges

$$\rightarrow O(n^2m + k!2^k(n\log n + m))$$
 time.

Can fix the outer two paths, leaving us with only $(k-2)!2^{k-2}$ options $\to O(n^2m + (k-2)!2^{k-2}(n\log n + m))$ time.

But we also need to *orient* the tabs from left to right.

 \rightarrow 2^k possible orientations of leaves

+ time to compute 1-simplicial edges

 $\rightarrow O(n^2m + k!2^k(n\log n + m))$ time.

Can fix the outer two paths, leaving us with only $(k-2)!2^{k-2}$ options

$$\rightarrow O(n^2m + (k-2)!2^{k-2}(n\log n + m))$$
 time.

 $\rightarrow O(n^2m)$ time for binary trees (recursively fix right/left spine)

Conclusion

Since we assign vertices to coordinates, we get **recognition** for free.

→ compute coordinates and check visibility graph

Conclusion

Since we assign vertices to coordinates, we get **recognition** for free.

→ compute coordinates and check visibility graph

General problem is still open...

- What about orthogonal polygons with fewer restrictions?
- Is it possible to reconstruct orthogonal convex fans in polynomial time?
- Are there more general classes of polygons that can be recognized / reconstructed?

Conclusion

Since we assign vertices to coordinates, we get **recognition** for free.

→ compute coordinates and check visibility graph

General problem is still open...

- What about orthogonal polygons with fewer restrictions?
- Is it possible to reconstruct orthogonal convex fans in polynomial time?
- Are there more general classes of polygons that can be recognized / reconstructed?

Thank You!