DRAWING BOBBIN LACE GRAPHS

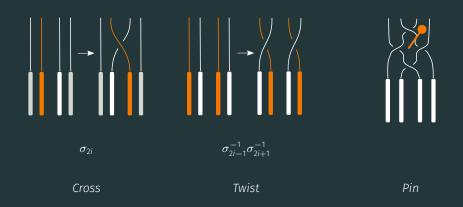
FUNDAMENTAL CYCLES FOR A SUBCLASS OF PERIODIC GRAPHS

Therese Biedl and Veronika Irvine Sept 26, 2017

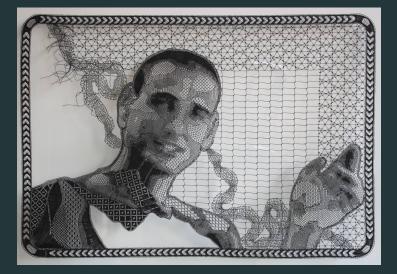
University of Waterloo

Portrait by Frans Purbus the Younger, circa 1600 source: www.metmuseum.org

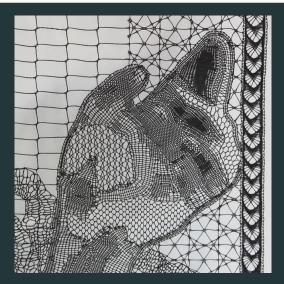
Guipure bobbin lace edging, circa 1620 source: www.sophieploeg.com



La Dentellière by Véronique Louppe source: m.ok.ru



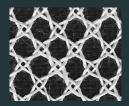
Portrait by Pierre Fouché source: www.pierrefouche.net



Portrait by Pierre Fouché

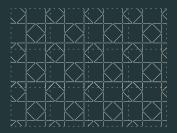
source: www.pierrefouche.net

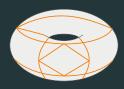
LACE PATTERN TO GRAPH



Infinite, simple, acyclic planar digraph: G^{∞}

Doubly periodic, represent as graph on a torus: G





Infinite, simple, acyclic planar digraph: G^{∞}

Doubly periodic, represent as graph on a torus: G

G lifts to G^∞

G need not be simple BUT Loops and parallel edges must be non-contractible

CONDITIONS ON GRAPH EMBEDDING (I., RUSKEY 2014)

C1. G is a directed 2-2-regular digraph

C2. Rotation system of G toroidal cellular embedding all facial walks contain at least 3 edges.

C3. All directed circuits of G are non-contractible.

Theorem (Biedl, I. 2017)

Conditions (C1-C3) can be tested in linear time.

C1 and C2 fairly obvious

C3: Does embedding admit a contractible circuit?

C3 CAN BE TESTED IN LINEAR TIME

Theorem (Biedl, I. 2017)

Presume (C1, C2) hold.

G has a contractible directed circuit → G has face bounded by contractible directed circuit.

Let C be a contractible directed circuit Choose C to maximize # faces "outside" - # faces "inside"

CONSERVATION OF THREADS

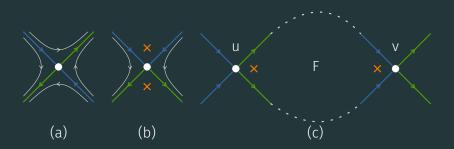
source: lacenews.files.wordpress.com

PROPERTY RESULTING FROM C1-C3

Theorem (I., Ruskey 2014) Presume (C1-C3) hold.

No contractible cycles

 \implies all vertices, outgoing arcs are rotationally consecutive

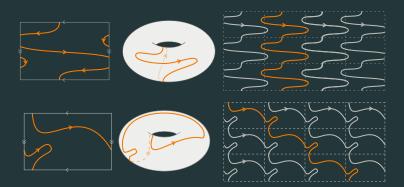


PROPERTY RESULTING FROM C1-C3

Theorem (I., Ruskey 2014) Presume (C1-C3) hold.

Partition edges of G into a set of osculating directed circuits. Partition is unique and can be found in linear time.

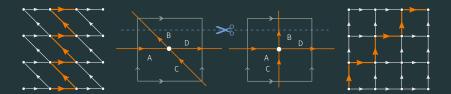
CONSERVATION OF THREADS



Wrapping index: (m, ℓ) top: (1, 0)bottom: (1, 1)

Usually consider two homeomorphic drawings as equivalent

Dehn twist



C4. There exists: a meridian M, a longitude L, and a partition $\mathcal{P}(G)$ into osculating directed circuits

such that

each circuit in $\mathcal{P}(G)$ is in the (1,0)-homotopy class.

Algebraic intersection:

 $\hat{i}(C_1, C_2) = \#C_1 \text{ crosses } C_2 \text{ l-to-r } - \#C_1 \text{ crosses } C_2 \text{ r-to-l}$

Theorem (well known, e.g. Stillwell) C₁, C₂ are simple closed curves.

 $\hat{i}(C_1, C_2) = 0 \iff$ same homotopy class.

PROPERTY RESULTING FROM C1-C3

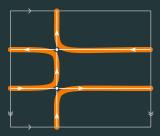
Theorem (Biedl, I. 2017)

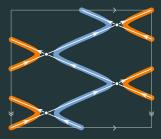
Presume (C1-C3) hold. All $P \in \mathcal{P}(G)$ belong to the same homotopy class.

Either:

 P_0 is a circuit and $|\mathcal{P}(G)| = 1$, or

all P are simple cycles with $\hat{i}(P_i, P_i) = 0$

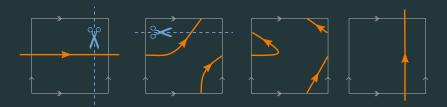




Theorem (Biedl, I. 2017) Presume (C1-C3) hold.

There exists a drawing of G for which (C4) holds.

Lickorish-twist theorem



Main contribution:

Theorem (Biedl, I. 2017) Presume G satisfies (C1-C3).

We can draw a graph that satisfies C4 in linear time.

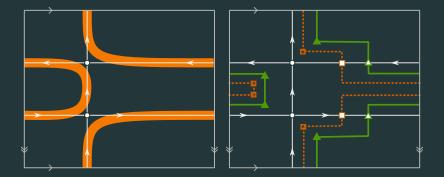
The drawing resides in an $O(n^4) \times O(n^4)$ -grid.

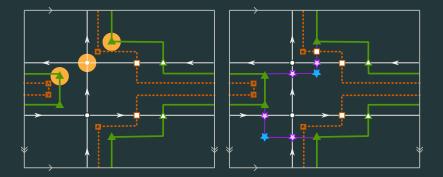
GRAPH DRAWING ALGORITHM

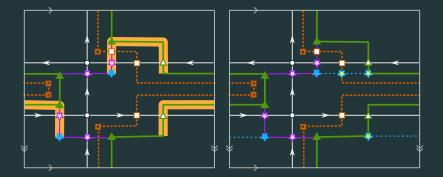
- A. Partition G into osculating circuits. Select one, call it P.
- **B**. Create the offset graph $\mathcal{O}(G)$.
- C. Find a simple cycle M in O(G) s.t.

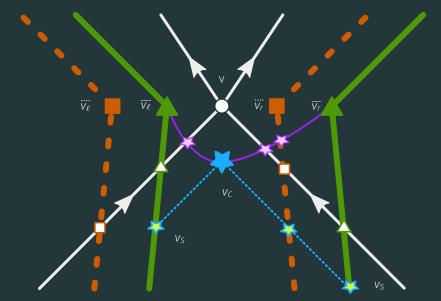
 î(M, P) = 0, and
 M intersects any edge of G at most once.
- D. Find a simple cycle L in O(G) s.t.

 î(L, P) = ±1, and
 M and L intersect exactly once, and
 L intersects any edge of G at most once.
- E. Use existing torus-drawing techniques to draw *G* on a rectangle with meridian *M* and longitude *L*.

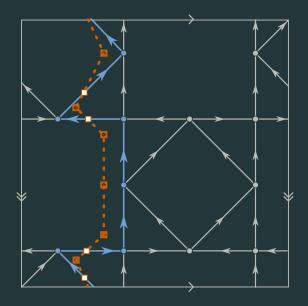








FIND MERIDIAN



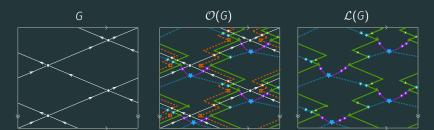
Select an osculating circuit P from G

Define *M* to be copy \ddot{P} in offset graph

 $\hat{i}(M, P) = 0$ Start and end on same side of P

M intersects every edge of G at most once By Construction Define $\mathcal{L}(G)$ subgraph of $\mathcal{O}(G)$

copies \overline{P} of osculating circuits crossover-edges shortcut-edges



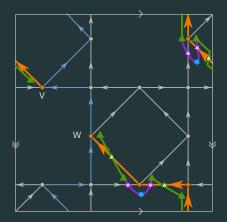
Theorem (Biedl, I. 2017)

Presume (C1-C3) hold, P is a directed osculating cycle.

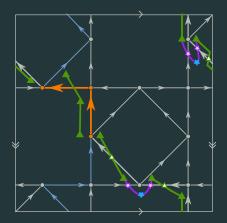
There exists a directed walk W in G that starts at $v \in P$ with left outgoing edge $e_1 \notin P$, ends at $w \in P$ with right incoming edge $e_k \notin P$, has no transverse intersection or shared edges with P.

Proof not hard but tedious, see paper.

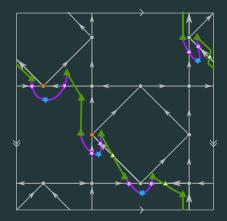
Find L^- : path in $\mathcal{L}(G)$ follows W from $\overline{v_{\ell}}$ to $\overline{w_r}$



Find L*: subpath of $\overline{P^*}$ connecting $\overline{w_\ell}$ to $\overline{v_r}$



Add crossing edges $(\overline{W_r}, \overline{W_\ell})$ and $(\overline{V_r}, \overline{V_\ell})$



$L = L^{-} + (\overline{w_r}, \overline{w_\ell}) + L^* + (\overline{v_r}, \overline{v_\ell})$

L and M cross exactly once:

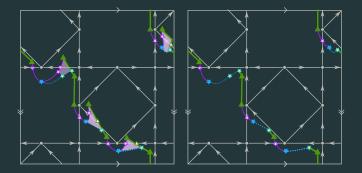
- L and M can only intersect at crossover edges
- + Order of vertices at v: $\overleftarrow{v_\ell}, \overline{v_\ell}, v, \overline{v_r}, \overline{v_r}$
- $\overrightarrow{P^*}$ uses $\overrightarrow{v_r}$, intersection
- Order of vertices at w: $\widetilde{w_{\ell}}, \overline{w_{\ell}}, w, \widetilde{w_{r}}, \overline{w_{r}}$
- $\overrightarrow{P^*}$ uses $\overrightarrow{w_{\ell}}$, no intersection

$\hat{i}(\hat{L}, P^*) = \pm 1$:

- L^- no transverse intersections with P^*
- *L** starts left side of *P** and ends right side of *P**, net one left to right crossing
- Crossover-edges $(\overline{w_r}, \overline{w_\ell})$ and $(\overline{v_r}, \overline{v_\ell})$ are both right to left crossings

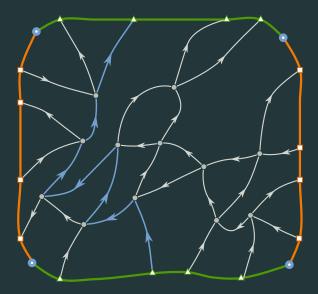
Remove double edge crossings using shortcuts

L intersects any edge of G at most once



RECTANGULAR SCHEMA

Algorithm produces chordless rectangular schema for G

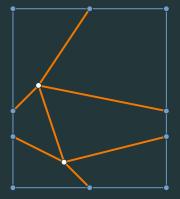


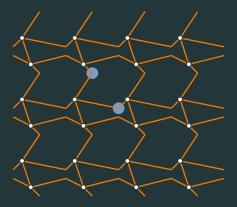
Drawing must be: (D1.) Planar (D2.) Straight-line (D3.) Integer lattice (D4.) Straight-frame (D5.) Periodic

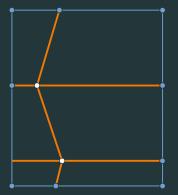
Shift Method (de Fraysseix, Pach Pollack 1990) (D1-D3), $O(2n - 4) \times O(n - 2)$ -grid

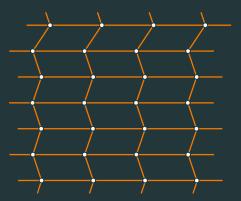
(Duncan, Goodrich, Koborouv 2011) (D1-D4), $O(n) \times O(n^2)$ -grid

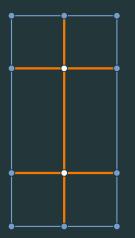
(Aleardy, Fusy, Kostrygin 2014) (D1-D5), $O(n^4) \times O(n^4)$ -grid

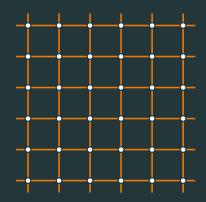


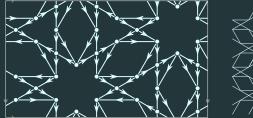




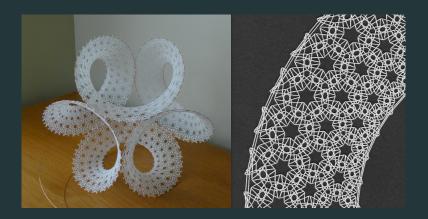








THANK YOU



http://tesselace.com

BETTER RESULTS

