

Arrangements of Pseudocircles: Triangles and Drawings

Stefan Felsner¹ and Manfred Scheucher²

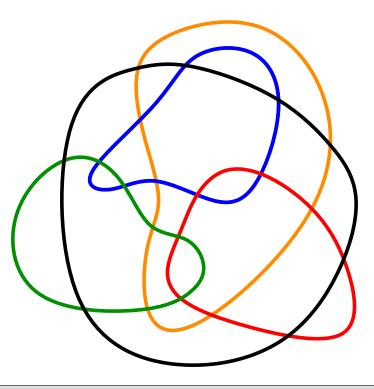
¹ Institut für Mathematik, Technische Universität Berlin, Germany
² Institute for Software Technology, Graz University of Technology, Austria

Arrangements of Pseudocircles

pseudocircle ... simple closed curve

intersecting ... each 2 pcs cross twice

simple ... no 3 pcs intersect in common point



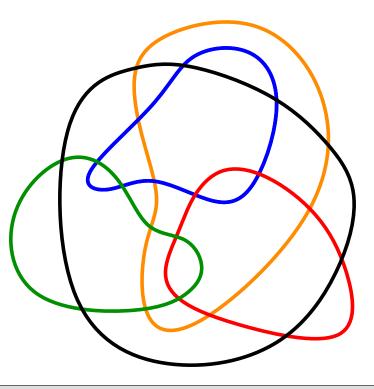
Arrangements of Pseudocircles

pseudocircle ... simple closed curve

intersecting ... each 2 pcs cross twice

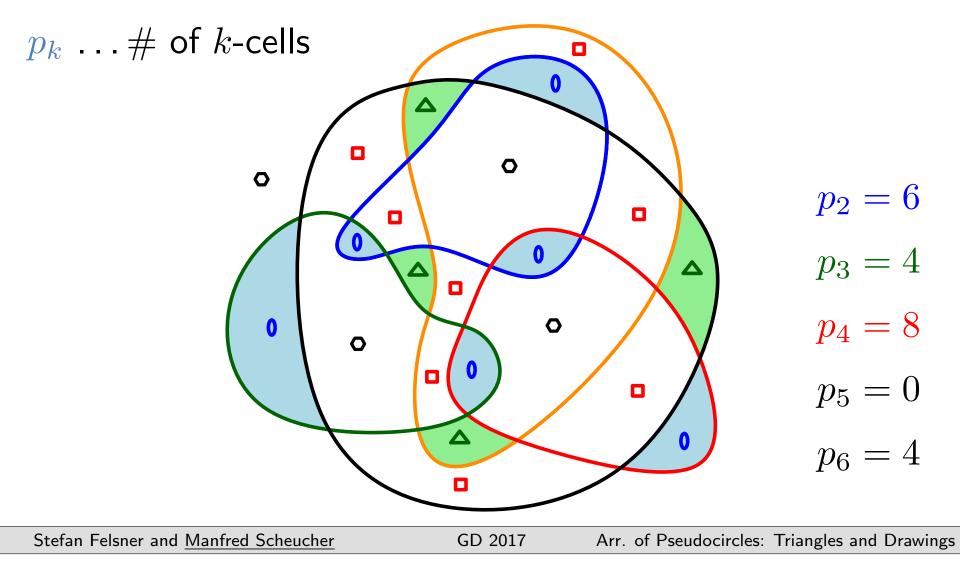
simple ... no 3 pcs intersect in common point

assumptions throughout presentation



Cells in Arrangements

digon, triangle, quadrangle, pentagon, ..., k-cell

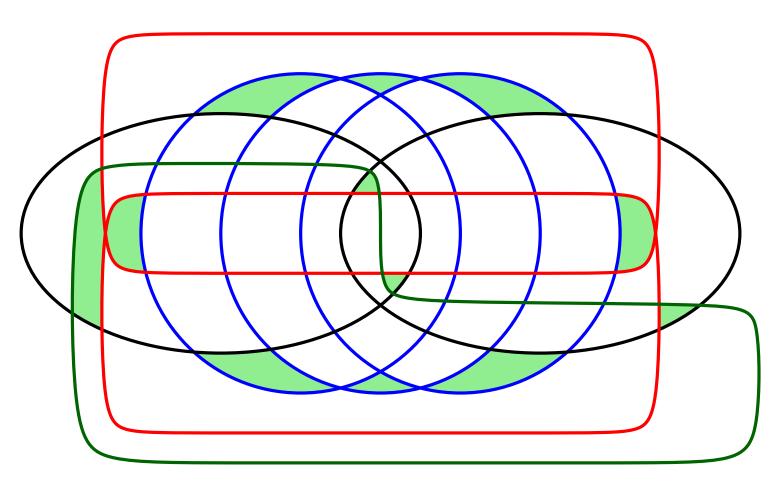


Outline

- 1.) min. # of triangles
- 1.1.) in digon-free arrangements
- 1.2.) in arrangements with digons
- 2.) max. # of triangles
- 3.) visualization of arrangements

Grünbaum's Conjecture ('72):

•
$$p_3 \ge 2n - 4$$
 ?



Grünbaum's Conjecture ('72):

• $p_3 \ge 2n - 4$?

Known:

- $p_3 \ge 4n/3$ [Hershberger and Snoeyink '91]
- $p_3 \ge 4n/3$ for non-simple arrangements, tight for infinite family [Felsner and Kriegel '98]

Grünbaum's Conjecture ('72):

• $p_3 \ge 2n - 4$?

Known:

- $p_3 \ge 4n/3$ [Hershberger and Snoeyink '91]
- $p_3 \ge 4n/3$ for non-simple arrangements, tight for infinite family [Felsner and Kriegel '98]

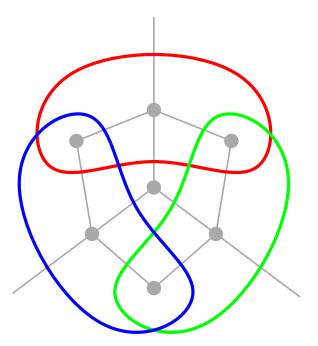
Our Contribution:

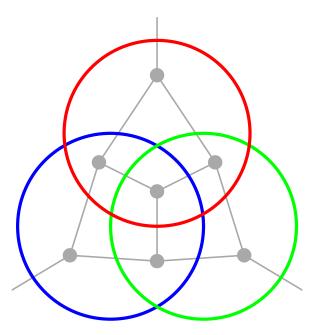
- disprove Grünbaum's Conjecture
- $p_3 < 1.\overline{45}n$
- New Conjecture: 4n/3 is tight

Enumeration of Arrangements

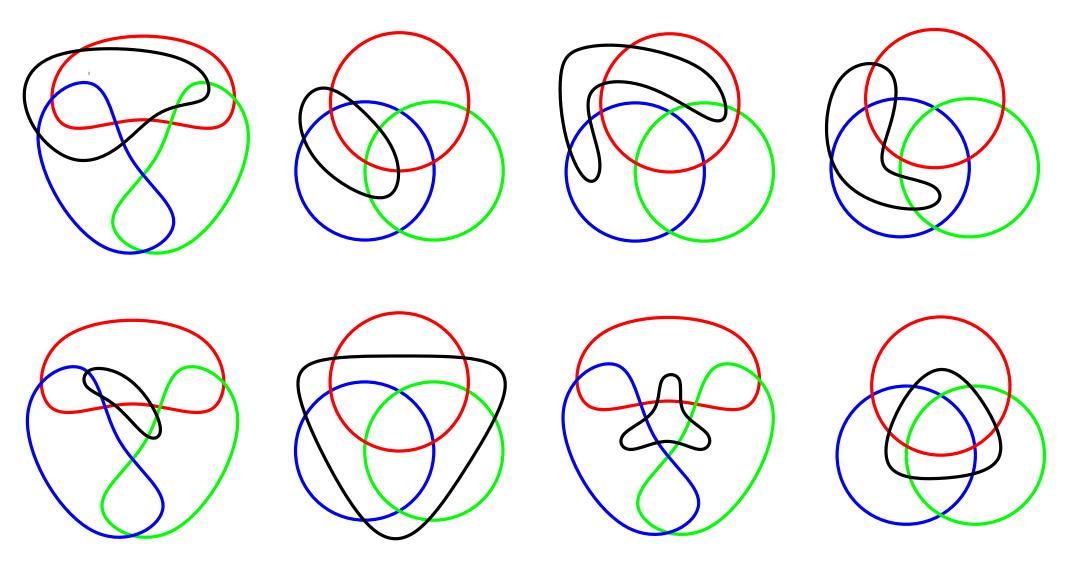
n	2	3	4	5	6	7
sphere	1	2	8	278	145 058	447 905 202
+digon-free	0	1	2	14	2 131	3 012 972

Table: # of combinatorially different arragements of n pcs.





Enumeration of Arrangements



Theorem. The minimum number of triangles in digon-free arrangements of n pseudocircles is

(i) 8 for
$$3 \le n \le 6$$
.

- (ii) $\lceil \frac{4}{3}n \rceil$ for $6 \le n \le 14$.
- (iii) $< 1.\overline{45}n$ for all n = 11k + 1 with $k \in \mathbb{N}$.

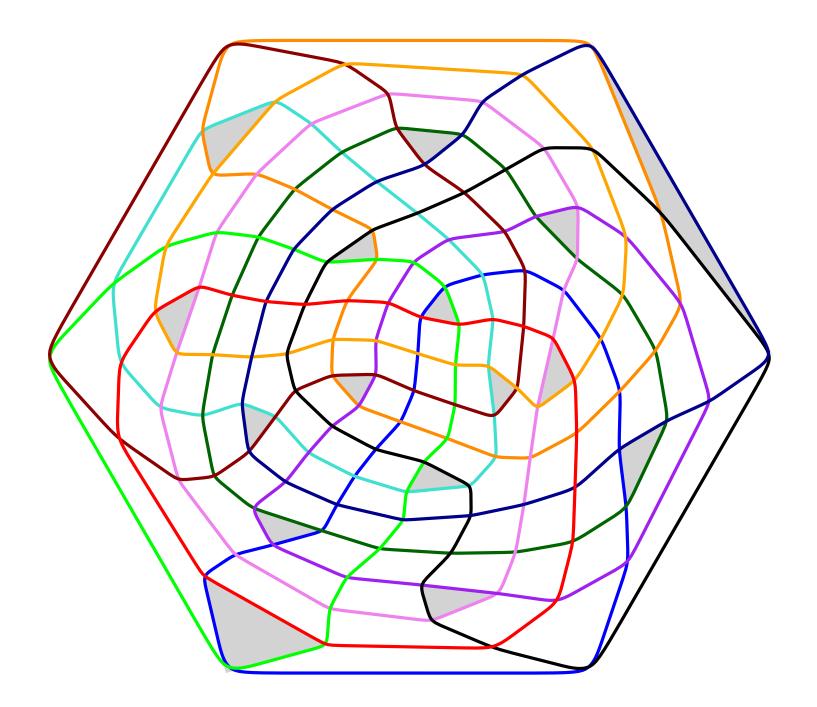


Figure: Arrangement of n = 12 pcs with $p_3 = 16$ triangles.

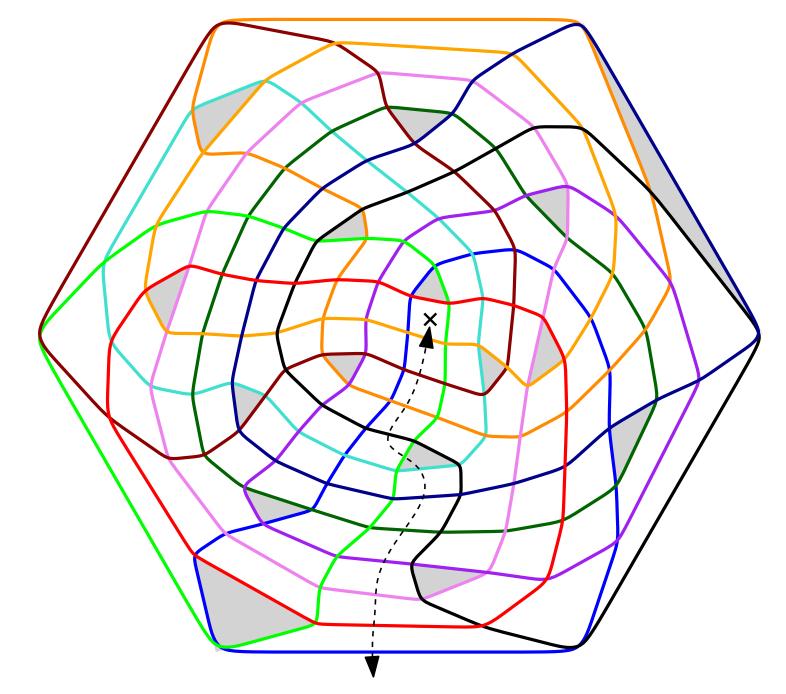
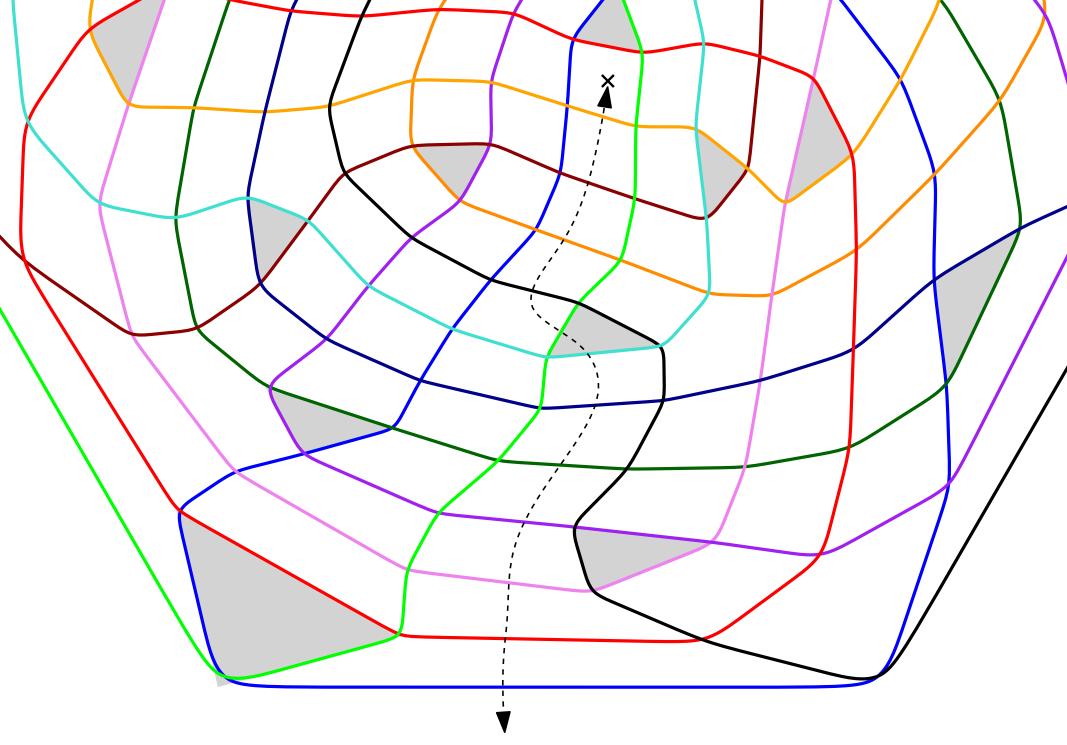
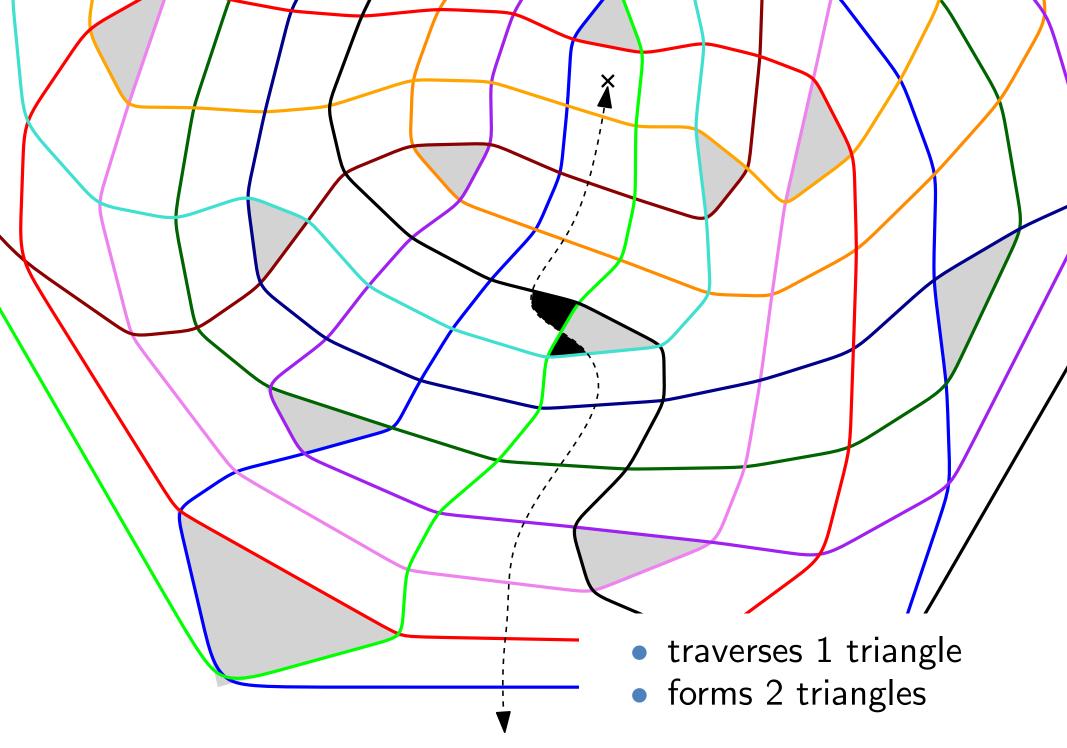


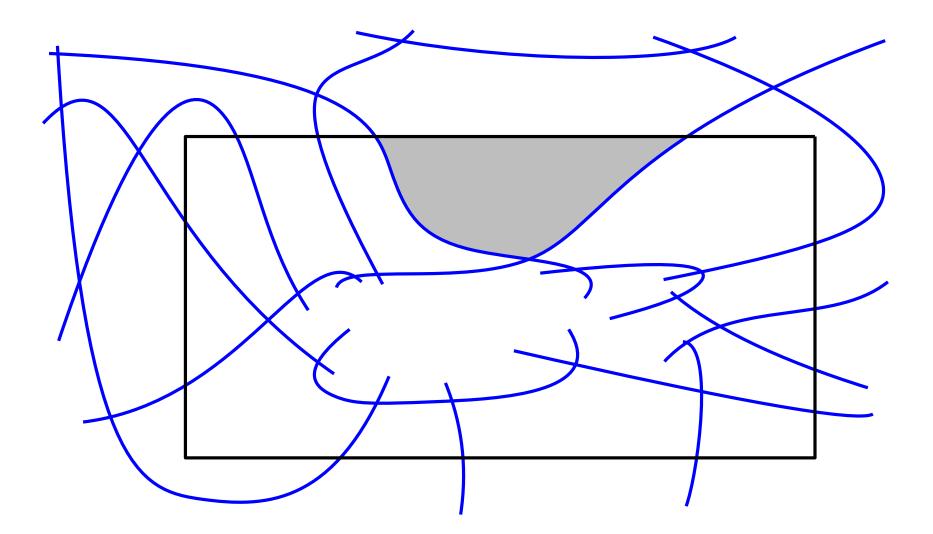
Figure: Arrangement of n = 12 pcs with $p_3 = 16$ triangles.

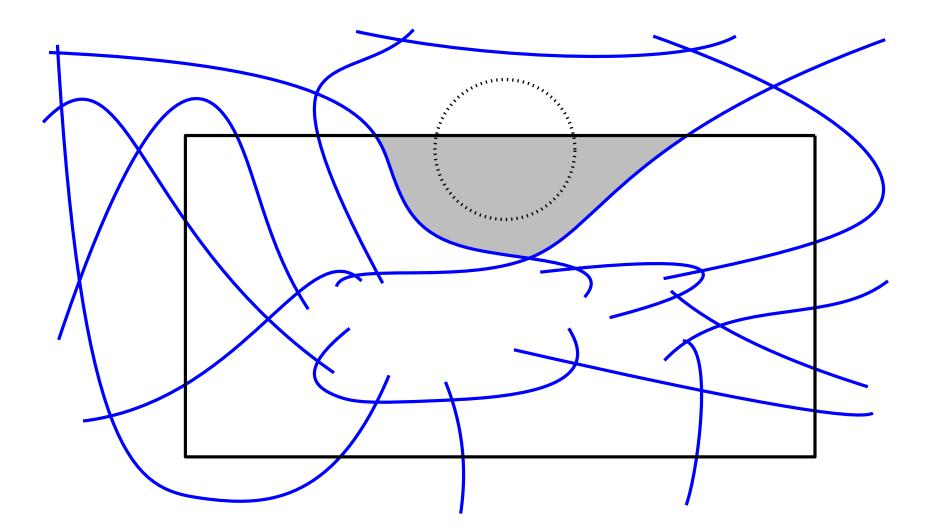


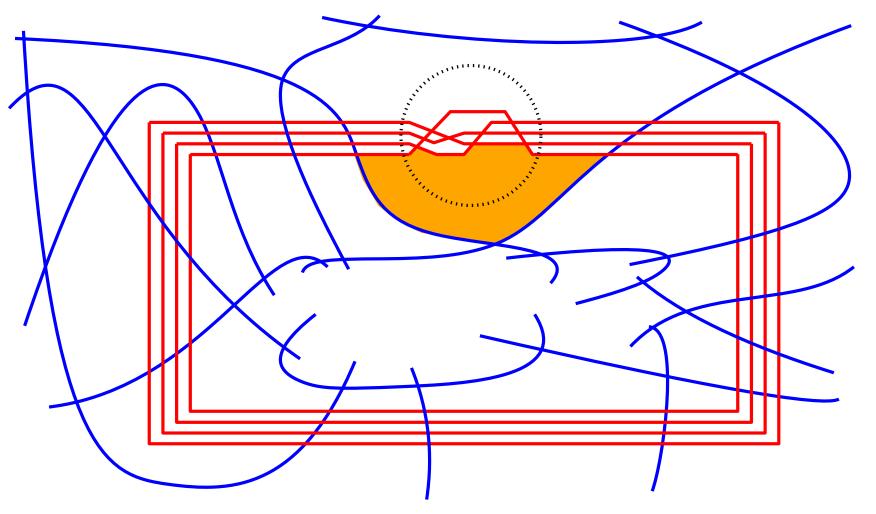


- arrangement \mathscr{A}_{12} with
 - \circ n = 12
 - $p_3 = 16$
 - $\delta = 2$ (formed triangles)
 - $\tau = 1$ (traversed)
- start with $\mathscr{C}_1 := \mathscr{A}_{12}$
- merge \mathscr{C}_k and $\mathscr{A}_{12} \longrightarrow \mathscr{C}_{k+1}$
- $n(\mathscr{C}_k) = 11k + 1$, $p_3(\mathscr{C}_k) = 16k$
- $\frac{16k}{11k+1}$ increases as k increases with limit $\frac{16}{11} = 1.\overline{45}$

Stefan Felsner and Manfred Scheucher







 $\Rightarrow p_3(\mathscr{C}) = p_3(\mathscr{A}) + p_3(\mathscr{B}) + \delta - \tau - 1.$

Theorem. The minimum number of triangles in digon-free arrangements of n pseudocircles is

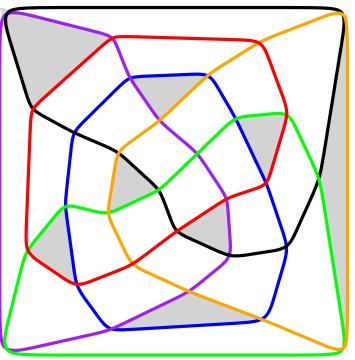
(i) 8 for
$$3 \le n \le 6$$
.

(ii)
$$\left\lceil \frac{4}{3}n \right\rceil$$
 for $6 \le n \le 14$.

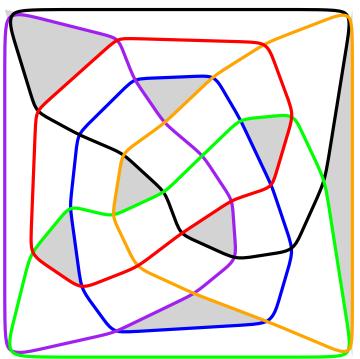
(iii) $< 1.\overline{45}n$ for all n = 11k + 1 with $k \in \mathbb{N}$.

Conjecture. $\lceil 4n/3 \rceil$ is tight for infinitely many n.

- \exists unique arrangement \mathcal{N}_6 with $n = 6, p_3 = 8$
- \mathcal{N}_6 appears as a subarrangement of every arrangement with $p_3 < 2n-4$ for n=7,8,9
- \mathcal{N}_6 is non-circularizable [FS'17]



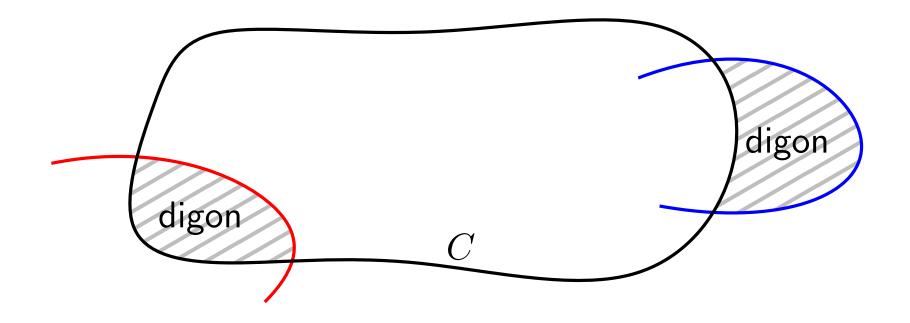
- \exists unique arrangement \mathcal{N}_6 with $n = 6, p_3 = 8$
- \mathcal{N}_6 appears as a subarrangement of every arrangement with $p_3 < 2n-4$ for n=7,8,9
- \mathcal{N}_6 is non-circularizable [FS'17]
- ⇒ Grünbaum's Conjecture might still be true for arrangements of circles!



Theorem. $p_3 \ge 2n/3$

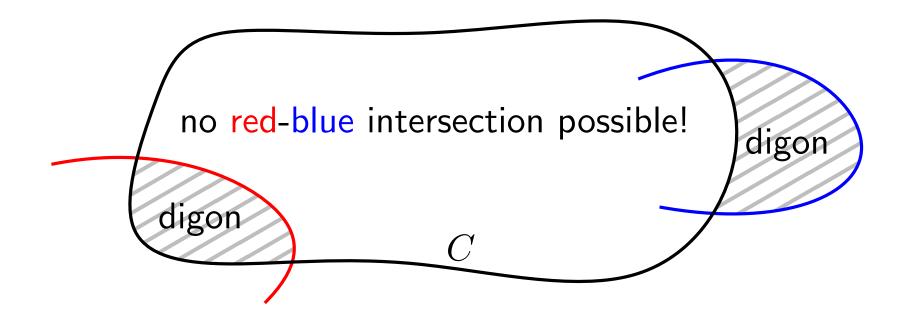
Theorem. $p_3 \ge 2n/3$

Proof. Let C be a pseudocircle in an arrangement \mathscr{A} . All digons incident to C lie on the same side of C.



Theorem. $p_3 \ge 2n/3$

Proof. Let C be a pseudocircle in an arrangement \mathscr{A} . All digons incident to C lie on the same side of C.



Theorem. $p_3 \ge 2n/3$

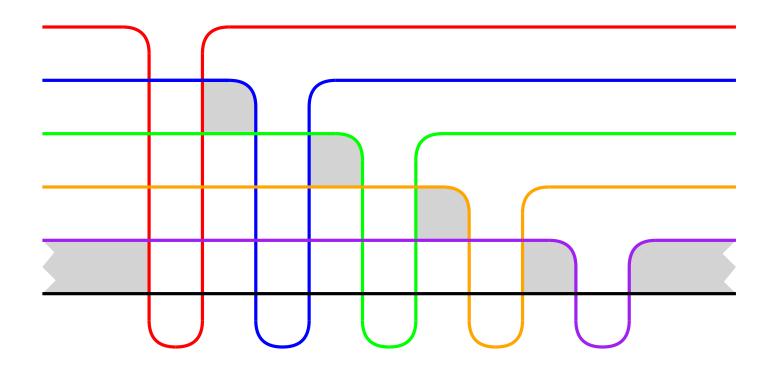
Proof. Let C be a pseudocircle in an arrangement \mathscr{A} .

All digons incident to C lie on the same side of C.

There are at least two digons or triangles on each side of ${\cal C}$ [Hershberger and Snoeyink '91] .

Theorem. $p_3 \ge 2n/3$

Conjecture. $p_3 \ge n-1$



Theorem.
$$p_3 \le \frac{2}{3}n^2 + O(n)$$

- **Theorem.** $p_3 \le \frac{2}{3}n^2 + O(n)$
 - $\frac{4}{3}\binom{n}{2}$ construction for infinitely many values of n, based on pseudoline arrangements [Blanc '11]

- **Theorem.** $p_3 \le \frac{2}{3}n^2 + O(n)$
 - $\frac{4}{3}\binom{n}{2}$ construction for infinitely many values of n, based on pseudoline arrangements [Blanc '11]
 - Question: $p_3 \le \frac{4}{3} \binom{n}{2} + O(1)$?

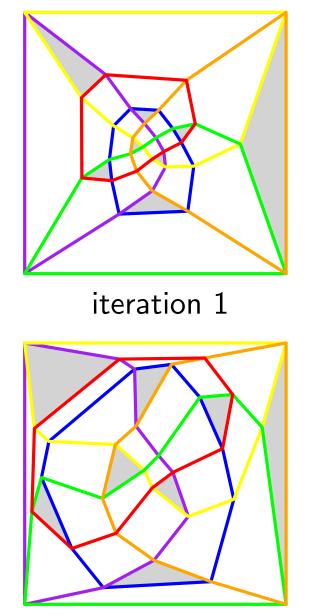
- **Theorem.** $p_3 \le \frac{2}{3}n^2 + O(n)$
 - $\frac{4}{3}\binom{n}{2}$ construction for infinitely many values of n, based on pseudoline arrangements [Blanc '11]

• Question:
$$p_3 \le \frac{4}{3} \binom{n}{2} + O(1)$$
 ?

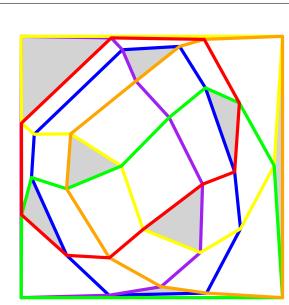
n	2	3	4	5	6	7	8	9	10
simple	0	8	8	13	20	29	≥ 37	≥ 48	≥ 60
+digon-free	_	8	8	12	20	29	≥ 37	≥ 48	≥ 60
$\lfloor \frac{4}{3} \binom{n}{2} \rfloor$	1	4	8	13	20	28	37	48	60

Visualization

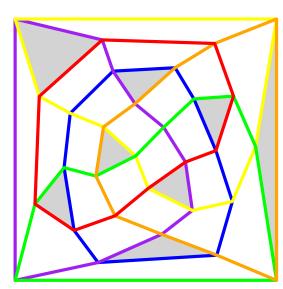
- iterated weighted Tutte embeddings
- large face \Rightarrow shorten edge \Rightarrow smaller face in next iter.



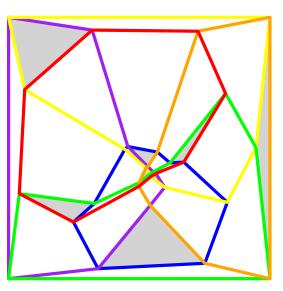
iteration 5



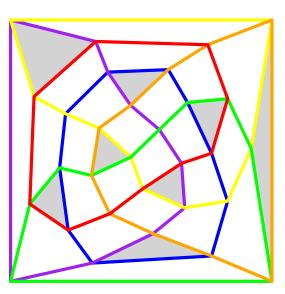
iteration 2



iteration 10



iteration 3



iteration 50

Stefan Felsner and Manfred Scheucher

GD 2017

Visualization

- iterated weighted Tutte embeddings
- smoothen curves using B-splines

