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Graph: vertices, edges

Martin Derka EPG-representations with small gri



Graph: vertices, edges
Nave

VPG-Representation (Vertex Path Grid)
vertices = pathsin a grid
edges = vertex intersections between paths
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Graph: vertices, edges
Nave

EPG-Representation (Edge Path Grid)
vertices = pathsina grid
edges = edge intersections between paths
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Introduction

@ Introduced in 2009, every graph has an EPG-representation
[Golumbic et at., 2009]
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Introduction

@ Introduced in 2009, every graph has an EPG-representation
[Golumbic et at., 2009]
@ Two directions of research:
@ What graph classes can we represent with few bends?
[Asinowski et al., 2009, Biedl et al., 2010, Francis + Lahiri, 2016]
© What can the EPG-representations be used for?
[Eppstein et al, 2013, Mehrabi, 2017]
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Introduction

@ Introduced in 2009, every graph has an EPG-representation
[Golumbic et at., 2009]
@ Two directions of research:
@ What graph classes can we represent with few bends?
[Asinowski et al., 2009, Biedl et al., 2010, Francis + Lahiri, 2016]
© What can the EPG-representations be used for?
[Eppstein et al, 2013, Mehrabi, 2017]

This paper:
@ What graphs can you represent in a small grid?

© Models of EPG: general, x-monotone, xy-monotone,
Xy T-monotone
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Introduction

Models of EPG representations

Xy-monotone xy+-monotone
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Constructions for upper bounds

Constructions via VPG representations

Theorem. Every graph G with n vertices has an xy™-monotone
EPG-representation in a 3n x 2n-grid.
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Constructions for upper bounds

Constructions via VPG representations

Theorem. Every graph G with n vertices has an xy™-monotone
EPG-representation in a 3n x 2n-grid.

Proof.

G has an xy-monotone VPG-representation in a w x h-grid
=
Any G' C G has
@ an x-monotone EPG-representation in a 2w x 2h-grid.

@ an xy*-monotone EPG-representation in a
(2w + h) x 2h-grid.
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Constructions for upper bounds
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Start with xy™-mon. VPG.




Constructions for upper bounds

TS

TEFRRFLRRRIN P

EEFFFFEFRRFETT] FRFR

» H |5 =
ST g i
: : 5

RIS

Start with xy™-mon. VPG. (1) Add a bump: x-mon. EPG.
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Constructions for upper bounds
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Start with xy™-mon. VPG. (1) Add a bump: x-mon. EPG.
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(2) Or skew...
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Constructions for upper bounds
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Start with xy™-mon. VPG. (1) Add a bump: x-mon. EPG.
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(2) Or skew... and create intersections: xy™-mon. EPG.
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Constructions for upper bounds

Theorem. Every graph G with n vertices has an xy™-monotone
EPG-representation in a 3n x 2n-grid.

Proof. Use the skewing technique.

T
....... “IIrErr

1. Represent a clique. 2. Create selected intersection.
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Constructions for upper bounds

EPG representations via pathwidth

Theorem. Every graph G of pathwidth k has an xy™-monotone
EPG-representation of height 8k + O(1) and width O(n), thus
with O(kn) area.
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Constructions for upper bounds

EPG representations via pathwidth

Theorem. Every graph G of pathwidth k has an xy™-monotone
EPG-representation of height 8k + O(1) and width O(n), thus
with O(kn) area.

G has pathwidth k

&
G is a subgraph of (k + 1)-colorable interval graph

as

Martin Derka EPG-representations with small grid-size



Constructions for upper bounds

Claim. Any k-colorable interval graph has a VPG-representation
such that:

@ Every path xy*-monotone and has shape —

@ The VPG representation “contains” the interval
representation

in a grid of size O(n) x (4k + O(1)).
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Constructions for upper bounds

Proof:
@ Assume connected.




Constructions for upper bounds

Proof:
@ Assume connected.
@ Use induction.

Given (k + 1)-colorable connected interval graph G, find the
farthest path P = a4, ..., ap.

as
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Constructions for upper bounds

Proof:
@ Assume connected.
@ Use induction.

Given (k + 1)-colorable connected interval graph G, find the
farthest path P = a4, ..., ap.

as

@ The farthest path P is an induced path
@ The farthest path spans the entire interval range
© The graph G — P is k-colorable (at most)
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Constructions for upper bounds

Inductive construction:




Constructions for upper bounds

Inductive construction:
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Constructions for upper bounds

Inductive construction:
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Constructions for upper bounds
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@ All the intersections are represented
@ The dimensions are O(n) x (4k + O(1))
© ltis xy"-monotone

Apply the skew technique!
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Constructions for upper bounds

EPG-representations via orthogonal drawings

@ 4-graph: all vertices have degree at most 4
@ orthogonal drawing of a 4-graph:

e grid-points — vertices
e grid-paths — edges
e edges are allowed to intersect
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Constructions for upper bounds

Theorem. Let G be a 4-graph that has an orthogonal drawing in

a w x h-grid. Then any minor of G has an EPG-representation in
a2w x 2h-grid

Proof:

i

v

(a) (b) ()
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Constructions for upper bounds

Theorem. Let G be a 4-graph that has an orthogonal drawing in
a w x h-grid. Then any minor of G has an EPG-representation in
a2w x 2h-grid

Corollary. All graphs of bounded treewidth (trees, outer-planar
graphs and series-parallel graphs) have an EPG-representation
in O(n) area. Graphs of bounded genus have an
EPG-representation in O(nlog? n) area.
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Lower bounds

Theorem. Let G be a triangle-free graph with m edges. Then any
EPG-representation of G uses at least m grid-edges (hence a
grid of area Q2(m))

Proof. Triangle free = no grid edge belongs to three vertex
paths
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Lower bounds

Theorem. Let G be a triangle-free graph with m edges. Then any
EPG-representation of G uses at least m grid-edges (hence a
grid of area Q2(m))

Proof. Triangle free = no grid edge belongs to three vertex
paths = We need Q(m) grid edges.
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Lower bounds

Theorem. Let G be a triangle-free graph with m edges. Then any
EPG-representation of G uses at least m grid-edges (hence a
grid of area Q2(m))

Proof. Triangle free = no grid edge belongs to three vertex
paths = We need Q(m) grid edges.

Corollaries. There are graphs that require grid sizes:

@ pathwidth-k graphs: Q(kn) (any EPG)
@ triangle-free pathwidth-k graphs: Q(k) x Q(k) (any EPG)
@ n-vertex graphs with O(n) edges: Q(n?) (any EPG)
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Lower bounds

Theorem. Let G be a triangle-free graph with m edges. Then any
EPG-representation of G uses at least m grid-edges (hence a
grid of area Q2(m))

Proof. Triangle free = no grid edge belongs to three vertex
paths = We need Q(m) grid edges.

Corollaries. There are graphs that require grid sizes:

@ pathwidth-k graphs: Q(kn) (any EPG)

@ triangle-free pathwidth-k graphs: Q(k) x Q(k) (any EPG)

@ n-vertex graphs with O(n) edges: Q(n?) (any EPG)
Thank you!
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