EPG-representations with small grid-size

Martin Derka mderka@uwaterloo.ca
David R. Cheriton School of Computer Science
University of Waterloo
\section*{GD 2017}
September 26, 2017
UNIVERSITYOF
WATERLOO

Joint work with T. Biedl, V. Dujmovic, P. Morin.

Graph: vertices, edges

Graph: vertices, edges

9ρ

VPG-Representation (Vertex Path Grid) vertices $=$ paths in a grid edges $=$ vertex intersections between paths

Graph: vertices, edges

9ρ

EPG-Representation (Edge Path Grid) vertices $=$ paths in a grid
edges $=$ edge intersections between paths

- Introduced in 2009, every graph has an EPG-representation [Golumbic et at., 2009]
- Introduced in 2009, every graph has an EPG-representation
[Golumbic et at., 2009]
- Two directions of research:
(1) What graph classes can we represent with few bends?
[Asinowski et al., 2009, Biedl et al., 2010, Francis + Lahiri, 2016]
(2) What can the EPG-representations be used for?
[Eppstein et al, 2013, Mehrabi, 2017]
- Introduced in 2009, every graph has an EPG-representation
[Golumbic et at., 2009]
- Two directions of research:
(1) What graph classes can we represent with few bends?
[Asinowski et al., 2009, Biedl et al., 2010, Francis + Lahiri, 2016]
(2) What can the EPG-representations be used for?
[Eppstein et al, 2013, Mehrabi, 2017]

This paper:

(1) What graphs can you represent in a small grid?
(2) Models of EPG: general, x-monotone, $x y$-monotone, $x y^{+}$-monotone

Models of EPG representations

General

$x y$-monotone

x-monotone

$x y^{+}$-monotone

Constructions via VPG representations

Theorem. Every graph G with n vertices has an $x y^{+}$-monotone EPG-representation in a $3 n \times 2 n$-grid.

Constructions via VPG representations

Theorem. Every graph G with n vertices has an $x y^{+}$-monotone EPG-representation in a $3 n \times 2 n$-grid.
Proof.
G has an $x y^{+}$-monotone VPG-representation in a $w \times h$-grid

$$
\Rightarrow
$$

Any $G^{\prime} \subseteq G$ has
(1) an x-monotone EPG-representation in a $2 w \times 2 h$-grid.
(2) an $x y^{+}$-monotone EPG-representation in a $(2 w+h) \times 2 h$-grid .

Start with $x y^{+}$-mon. VPG.

Start with $x y^{+}$-mon. VPG.
(1) Add a bump: x-mon. EPG.

Start with $x y^{+}-$mon. VPG.
(2) Or skew...

(1) Add a bump: x-mon. EPG.

Start with $x y^{+}-$mon. VPG.

(2) Or skew...
(1) Add a bump: x-mon. EPG.

and create intersections: $x y^{+}$-mon. EPG.

Theorem. Every graph G with n vertices has an $x y^{+}$-monotone EPG-representation in a $3 n \times 2 n$-grid.

Proof. Use the skewing technique.

1. Represent a clique.

2. Create selected intersection.

EPG representations via pathwidth

Theorem. Every graph G of pathwidth k has an $x y^{+}$-monotone EPG-representation of height $8 k+O(1)$ and width $O(n)$, thus with $O(k n)$ area.

EPG representations via pathwidth

Theorem. Every graph G of pathwidth k has an $x y^{+}$-monotone EPG-representation of height $8 k+O(1)$ and width $O(n)$, thus with $O(k n)$ area.
G has pathwidth k
\Leftrightarrow
G is a subgraph of $(k+1)$-colorable interval graph

Claim. Any k-colorable interval graph has a VPG-representation such that:

- Every path $x y^{+}$-monotone and has shape \upharpoonright
- The VPG representation "contains" the interval representation
in a grid of size $O(n) \times(4 k+O(1))$.

Proof:

(1) Assume connected.

Proof:

(1) Assume connected.
(2) Use induction.

Given $(k+1)$-colorable connected interval graph G, find the farthest path $P=a_{1}, \ldots, a_{p}$.

Proof:

(1) Assume connected.
(2) Use induction.

Given $(k+1)$-colorable connected interval graph G, find the farthest path $P=a_{1}, \ldots, a_{p}$.

(1) The farthest path P is an induced path
(2) The farthest path spans the entire interval range
(0) The graph $G-P$ is k-colorable (at most)

Inductive construction:

Inductive construction:

Inductive construction:

(1) All the intersections are represented
(2) The dimensions are $O(n) \times(4 k+O(1))$
(3) It is $x y^{+}$-monotone

Apply the skew technique!

EPG-representations via orthogonal drawings

- 4-graph: all vertices have degree at most 4
- orthogonal drawing of a 4-graph:
- grid-points \rightarrow vertices
- grid-paths \rightarrow edges
- edges are allowed to intersect

Theorem. Let G be a 4-graph that has an orthogonal drawing in a $w \times h$-grid. Then any minor of G has an EPG-representation in a $2 w \times 2 h$-grid

Proof:

(a)

(b)

(c)

Theorem. Let G be a 4-graph that has an orthogonal drawing in a $w \times h$-grid. Then any minor of G has an EPG-representation in a $2 w \times 2 h$-grid

Corollary. All graphs of bounded treewidth (trees, outer-planar graphs and series-parallel graphs) have an EPG-representation in $O(n)$ area. Graphs of bounded genus have an EPG-representation in $O\left(n \log ^{2} n\right)$ area.

Lower bounds

Theorem. Let G be a triangle-free graph with m edges. Then any EPG-representation of G uses at least m grid-edges (hence a grid of area $\Omega(m)$)

Proof. Triangle free \Rightarrow no grid edge belongs to three vertex paths

Lower bounds

Theorem. Let G be a triangle-free graph with m edges. Then any EPG-representation of G uses at least m grid-edges (hence a grid of area $\Omega(m)$)

Proof. Triangle free \Rightarrow no grid edge belongs to three vertex paths \Rightarrow We need $\Omega(m)$ grid edges.

Lower bounds

Theorem. Let G be a triangle-free graph with m edges. Then any EPG-representation of G uses at least m grid-edges (hence a grid of area $\Omega(m)$)

Proof. Triangle free \Rightarrow no grid edge belongs to three vertex paths \Rightarrow We need $\Omega(m)$ grid edges.

Corollaries. There are graphs that require grid sizes:

- pathwidth-k graphs: $\Omega(k n)$
- triangle-free pathwidth-k graphs: $\Omega(k) \times \Omega(k)$
(any EPG)
- n-vertex graphs with $O(n)$ edges: $\Omega\left(n^{2}\right)$
(any EPG)
(any EPG)

Lower bounds

Theorem. Let G be a triangle-free graph with m edges. Then any EPG-representation of G uses at least m grid-edges (hence a grid of area $\Omega(m)$)

Proof. Triangle free \Rightarrow no grid edge belongs to three vertex paths \Rightarrow We need $\Omega(m)$ grid edges.

Corollaries. There are graphs that require grid sizes:

- pathwidth-k graphs: $\Omega(k n)$
- triangle-free pathwidth-k graphs: $\Omega(k) \times \Omega(k)$
(any EPG)
- n-vertex graphs with $O(n)$ edges: $\Omega\left(n^{2}\right)$
(any EPG)
(any EPG)

Thank you!

