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Lower bounds

Graph: vertices, edges

VPG-Representation (Vertex Path Grid)
vertices = paths in a grid
edges = vertex intersections between paths
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Graph: vertices, edges

EPG-Representation (Edge Path Grid)
vertices = paths in a grid
edges = edge intersections between paths
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Introduction
Constructions for upper bounds

Lower bounds

Introduced in 2009, every graph has an EPG-representation
[Golumbic et at., 2009]

Two directions of research:
1 What graph classes can we represent with few bends?

[Asinowski et al., 2009, Biedl et al., 2010, Francis + Lahiri, 2016]
2 What can the EPG-representations be used for?

[Eppstein et al, 2013, Mehrabi, 2017]

This paper:
1 What graphs can you represent in a small grid?
2 Models of EPG: general, x-monotone, xy -monotone,

xy+-monotone
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Lower bounds

Models of EPG representations

General x-monotone

xy -monotone xy+-monotone
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Constructions for upper bounds

Lower bounds

Constructions via VPG representations

Theorem. Every graph G with n vertices has an xy+-monotone
EPG-representation in a 3n × 2n-grid.

Proof.

G has an xy+-monotone VPG-representation in a w × h-grid
⇒

Any G′ ⊆ G has
1 an x-monotone EPG-representation in a 2w × 2h-grid.
2 an xy+-monotone EPG-representation in a

(2w + h)× 2h-grid.
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Constructions for upper bounds

Lower bounds

Start with xy+-mon. VPG.

(1) Add a bump: x-mon. EPG.

(2) Or skew. . . and create intersections: xy+-mon. EPG.
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Constructions for upper bounds

Lower bounds

Theorem. Every graph G with n vertices has an xy+-monotone
EPG-representation in a 3n × 2n-grid.

Proof. Use the skewing technique.

1. Represent a clique. 2. Create selected intersection.
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Constructions for upper bounds

Lower bounds

EPG representations via pathwidth

Theorem. Every graph G of pathwidth k has an xy+-monotone
EPG-representation of height 8k + O(1) and width O(n), thus
with O(kn) area.

G has pathwidth k
⇔

G is a subgraph of (k + 1)-colorable interval graph

Martin Derka EPG-representations with small grid-size 9/19



Introduction
Constructions for upper bounds

Lower bounds

EPG representations via pathwidth

Theorem. Every graph G of pathwidth k has an xy+-monotone
EPG-representation of height 8k + O(1) and width O(n), thus
with O(kn) area.

G has pathwidth k
⇔

G is a subgraph of (k + 1)-colorable interval graph

Martin Derka EPG-representations with small grid-size 9/19



Introduction
Constructions for upper bounds

Lower bounds

Claim. Any k -colorable interval graph has a VPG-representation
such that:

Every path xy+-monotone and has shape
The VPG representation “contains” the interval
representation

in a grid of size O(n)× (4k + O(1)).
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Lower bounds

Proof:
1 Assume connected.

2 Use induction.

Given (k + 1)-colorable connected interval graph G, find the
farthest path P = a1, . . . , ap.

1 The farthest path P is an induced path
2 The farthest path spans the entire interval range
3 The graph G − P is k -colorable (at most)
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Lower bounds

Inductive construction:
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Introduction
Constructions for upper bounds

Lower bounds

1 All the intersections are represented
2 The dimensions are O(n)× (4k + O(1))

3 It is xy+-monotone

Apply the skew technique!
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Constructions for upper bounds

Lower bounds

EPG-representations via orthogonal drawings

4-graph: all vertices have degree at most 4
orthogonal drawing of a 4-graph:

grid-points→ vertices
grid-paths→ edges
edges are allowed to intersect
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Constructions for upper bounds

Lower bounds

Theorem. Let G be a 4-graph that has an orthogonal drawing in
a w × h-grid. Then any minor of G has an EPG-representation in
a 2w × 2h-grid

Proof:
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Lower bounds

Theorem. Let G be a 4-graph that has an orthogonal drawing in
a w × h-grid. Then any minor of G has an EPG-representation in
a 2w × 2h-grid

Corollary. All graphs of bounded treewidth (trees, outer-planar
graphs and series-parallel graphs) have an EPG-representation
in O(n) area. Graphs of bounded genus have an
EPG-representation in O(n log2 n) area.
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Lower bounds

Lower bounds

Theorem. Let G be a triangle-free graph with m edges. Then any
EPG-representation of G uses at least m grid-edges (hence a
grid of area Ω(m))

Proof. Triangle free⇒ no grid edge belongs to three vertex
paths

⇒We need Ω(m) grid edges.

Corollaries. There are graphs that require grid sizes:
pathwidth-k graphs: Ω(kn) (any EPG)
triangle-free pathwidth-k graphs: Ω(k)× Ω(k) (any EPG)
n-vertex graphs with O(n) edges: Ω(n2) (any EPG)

Thank you!
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