On Smooth Orthogonal and Octilinear Drawings: Relations, Complexity and Kandinsky Drawings

Michael A. Bekos, Henry Förster, Michael Kaufmann

Wilhelm-Schickard-Institut für Informatik Universität Tübingen, Germany

- + Aesthetics of Lombardi drawings
- Octilinear: Generalization to max-degree 8

 Hetromap applications

Relations

Relations

Not all max-degree 4 graphs admit bendless smooth orthogonal/octilinear drawings [Bekos et al. 2013, Bekos et al. 2017]

I bend per edge suffices for max-degree 4 graphs in both models [Alam et al. 2014, Bekos et al. 2015]

Complexity

Relations

Not all max-degree 4 graphs admit bendless smooth orthogonal/octilinear drawings [Bekos et al. 2013, Bekos et al. 2017]

I bend per edge suffices for max-degree 4 graphs in both models [Alam et al. 2014, Bekos et al. 2015]

Complexity

Bendless octilinear drawing problem NP-hard on max-degree 8 graphs

[Nöllenburg 2005]

Relations

Not all max-degree 4 graphs admit bendless smooth orthogonal/octilinear drawings [Bekos et al. 2013, Bekos et al. 2017]

I bend per edge suffices for max-degree 4 graphs in both models [Alam et al. 2014, Bekos et al. 2015]

Complexity

Bendless octilinear drawing problem NP-hard on max-degree 8 graphs

[Nöllenburg 2005]

Kandinsky Drawings

 Book embedding inspired approach for smooth orthogonal model (< n edges with edges of complexity 2)
 [Bekos et al. 2013, Cardinal et al. 2015]

Relations

Complexity

Relations

Classes of bendless smooth orthogonal drawable (SC_1) and octilinear drawable $(8C_1)$ graphs are incomparable

Complexity

Relations

Classes of bendless smooth orthogonal drawable (SC_1) and octilinear drawable $(8C_1)$ graphs are incomparable

Complexity

Deciding if a smooth orthogonal or octilinear representation is realizable is *NP*-hard on max-degree 4 graphs

Relations

Classes of bendless smooth orthogonal drawable (SC_1) and octilinear drawable $(8C_1)$ graphs are incomparable

Complexity

Deciding if a smooth orthogonal or octilinear representation is realizable is *NP*-hard on max-degree 4 graphs

- Smooth orthogonal: Alternative approach producing aesthetically more pleasing drawings
- Octilinear: First results

Bendless smooth orthogonal and octilinear drawings require same endpoint positioning

Bendless smooth orthogonal and octilinear drawings require same endpoint positioning

Idea: Replace arcs with diagonals and vice versa

Bendless smooth orthogonal and octilinear drawings require same endpoint positioning

Idea: Replace arcs with diagonals and vice versa

Bendless smooth orthogonal and octilinear drawings require same endpoint positioning

Idea: Replace arcs with diagonals and vice versa

But: We must retain planarity and port constraints!

Bendless smooth orthogonal and octilinear drawings require same endpoint positioning

Idea: Replace arcs with diagonals and vice versa

But: We must retain planarity and port constraints!

Bendless smooth orthogonal and octilinear drawings require same endpoint positioning

Idea: Replace arcs with diagonals and vice versa

But: We must retain planarity and port constraints!

 $8C_k$ = Graphs drawable with octilinear complexity k

 $8C_k$ = Graphs drawable with octilinear complexity k

Intersection of SC_1 and $8C_1$

Infinitely large graph family drawable with both styles:

Intersection of SC_1 and $8C_1$

Infinitely large graph family drawable with both styles:

Family is 4-regular \rightarrow density does not divide classes

 $8C_k$ = Graphs drawable with octilinear complexity k

 $8C_k$ = Graphs drawable with octilinear complexity k

 $8C_k$ = Graphs drawable with octilinear complexity k

Infinitely large 4-regular graph family:

Infinitely large 4-regular graph family:

End components only have one embedding

End components only have one embedding

Properties of this embedding:

End components only have one embedding

Properties of this embedding:

Each face has length at most 5

End components only have one embedding

Properties of this embedding:

- Each face has length at most 5
- All but one vertex on the outerface must support two ports to the interior of the drawing

If we try to realize such a drawing, we find, that it is not possible to close the outerface

If we try to realize such a drawing, we find, that it is not possible to close the outerface

If we try to realize such a drawing, we find, that it is not possible to close the outerface

If we try to realize such a drawing, we find, that it is not possible to close the outerface

If we try to realize such a drawing, we find, that it is not possible to close the outerface

Relations

 $8C_k$ = Graphs drawable with octilinear complexity k

 SC_k = Graphs drawable with smooth orthogonal complexity k

Relations

 $8C_k$ = Graphs drawable with octilinear complexity k

 SC_k = Graphs drawable with smooth orthogonal complexity k

Relations

 $8C_k$ = Graphs drawable with octilinear complexity k

 SC_k = Graphs drawable with smooth orthogonal complexity k

Infinitely large 4-regular graph family:

Multiple copies of a basic component in a cycle

Infinitely large 4-regular graph family:

Multiple copies of a basic component in a cycle
2 separation pairs that allow flips

- Multiple copies of a basic component in a cycle
 - 2 separation pairs that allow flips
 - All but one copy must have the outerface as shown in the figure

- Multiple copies of a basic component in a cycle
 - 2 separation pairs that allow flips
 - All but one copy must have the outerface as shown in the figure
 - In order to connect to other copies: 2 free ports at red vertices

- Multiple copies of a basic component in a cycle
 - 2 separation pairs that allow flips
 - All but one copy must have the outerface as shown in the figure
 - In order to connect to other copies: 2 free ports at red vertices
 - Possible embeddings are isomorphic to each other

- Multiple copies of a basic component in a cycle
 - 2 separation pairs that allow flips
 - All but one copy must have the outerface as shown in the figure
 - In order to connect to other copies: 2 free ports at red vertices
 - Possible embeddings are isomorphic to each other
- Case analysis: No smooth orthogonal drawing exists

Smooth Orthogonal Representation Realizability

Input: angles between edges and edge segments along edges

- Input: angles between edges and edge segments along edges
- Output: drawing realizing input constraints

- Input: angles between edges and edge segments along edges
- Output: drawing realizing input constraints
- Equivalent to last step of TSM [Tamassia 1987]

- Input: angles between edges and edge segments along edges
- Output: drawing realizing input constraints
- Equivalent to last step of TSM [Tamassia 1987]
- Reduction from 3-SAT

- Input: angles between edges and edge segments along edges
- Output: drawing realizing input constraints
- Equivalent to last step of TSM [Tamassia 1987]
- Reduction from 3-SAT
- General Ideas:
 - Encode information in edge lengths

- Input: angles between edges and edge segments along edges
- Output: drawing realizing input constraints
- Equivalent to last step of TSM [Tamassia 1987]
- Reduction from 3-SAT
- General Ideas:
 - Encode information in edge lengths
 - Propagate along rectangular faces

- Input: angles between edges and edge segments along edges
- Output: drawing realizing input constraints
- Equivalent to last step of TSM [Tamassia 1987]
- Reduction from 3-SAT
- General Ideas:
 - Encode information in edge lengths
 - Propagate along rectangular faces
 - Change direction with triangular faces

- Input: angles between edges and edge segments along edges
- Output: drawing realizing input constraints
- Equivalent to last step of TSM [Tamassia 1987]
- Reduction from 3-SAT
- General Ideas:
 - Encode information in edge lengths
 - Propagate along rectangular faces
 - Change direction with triangular faces
 - Ensure that two sums of information are the same

Auxiliary Gadgets

Copy gadget

Auxiliary Gadgets

Copy gadget

Auxiliary Gadgets

Copy gadget

Auxiliary Gadgets

Auxiliary Gadgets

Auxiliary Gadgets

We can connect literals and clauses properly

► Take 3 units of "flow" as input

- ► Take 3 units of "flow" as input
- Any algorithm must decide how to distribute on x and \overline{x}

- ► Take 3 units of "flow" as input
- Any algorithm must decide how to distribute on x and \overline{x}

- ► Take 3 units of "flow" as input
- Any algorithm must decide how to distribute on x and \overline{x}
 - We immediately get a negation

- ► Take 3 units of "flow" as input
- Any algorithm must decide how to distribute on x and \overline{x}
 - We immediately get a negation
 - We enforce a parity between x and \overline{x} with another gadget

- Take 3 units of "flow" as input
- Any algorithm must decide how to distribute on x and \overline{x}
 - We immediately get a negation
 - We enforce a parity between x and \overline{x} with another gadget
 - ▶ $\ell(\texttt{true}) \gtrsim 2\ell(u)$ and $\ell(\texttt{false}) \lesssim \ell(u)$

Clause Gadget

Clause Gadget

One side of the arc is 4 units + a free edge's length long

Clause Gadget

One side of the arc is 4 units + a free edge's length long

The other side length is defined by the literals of the clause
Clause Gadget

One side of the arc is 4 units + a free edge's length long

- The other side length is defined by the literals of the clause
- ℓ(true) $\geq 2\ell(u)$ and $\ell(\texttt{false}) \leq \ell(u)$ ⇒ at least one literal must be true

 $(a \lor b \lor c) \land (\overline{a} \lor \overline{b} \lor c)$ with a = false and b = c = true

 $(a \lor b \lor c) \land (\overline{a} \lor \overline{b} \lor c)$ with a = false and b = c = true

 $(a \lor b \lor c) \land (\overline{a} \lor \overline{b} \lor c)$ with a =false and b = c =true

 $(a \lor b \lor c) \land (\overline{a} \lor \overline{b} \lor c)$ with a = false and b = c = true

 $(a \lor b \lor c) \land (\overline{a} \lor \overline{b} \lor c)$ with a = false and b = c = true

 $(a \lor b \lor c) \land (\overline{a} \lor \overline{b} \lor c)$ with a = false and b = c = true

 $(a \lor b \lor c) \land (\overline{a} \lor \overline{b} \lor c)$ with a = false and b = c = true

Remarks

Octilinear Representation Realizability is *NP*-hard on max-degree 4 graphs

Remarks

- Octilinear Representation Realizability is *NP*-hard on max-degree 4 graphs
 - Same reduction scheme, most gagdets easy to transform

Remarks

- Octilinear Representation Realizability is *NP*-hard on max-degree 4 graphs
 - Same reduction scheme, most gagdets easy to transform
- TSM approach not suitable for smooth orthogonal and octilinear drawings

Kandinsky Drawings

Kandinsky model in smooth orthogonal setting so far: Book Embedding Inspired

[Bekos et al. 2013]

Kandinsky Drawings

Kandinsky model in smooth orthogonal setting so far: Book Embedding Inspired
[Bekos et al. 2013]

► O(n) time, O(n²) area, ≤ n - 2 edges of complexity 2... But is it readable?

Kandinsky Drawings

Kandinsky model in smooth orthogonal setting so far: Book Embedding Inspired
[Bekos et al. 2013]

- ► O(n) time, O(n²) area, ≤ n 2 edges of complexity 2... But is it readable?
- Possible improvements:
 - Distribute vertices more evenly
 - Draw edges x, y-monotone

Based on [de Fraysseix, Pach, Pollack 1990]

- Based on [de Fraysseix, Pach, Pollack 1990]
- Contour condition: Only quarter circular arcs on Γ_{k-1}

- Based on [de Fraysseix, Pach, Pollack 1990]
- Contour condition: Only quarter circular arcs on Γ_{k-1}

Shift blue and green vertices as in the original shift-method, draw (w_ℓ, v_k) and (w_r, v_k) as a single arc

- Based on [de Fraysseix, Pach, Pollack 1990]
- Contour condition: Only quarter circular arcs on Γ_{k-1}

- Shift blue and green vertices as in the original shift-method, draw (w_{ℓ}, v_k) and (w_r, v_k) as a single arc
 - We can use this approach for octilinear Kandinsky drawings too!

So far: Linear time, quadratic area, bi-monotonicity, but no guarantee for number of bends

- So far: Linear time, quadratic area, bi-monotonicity, but no guarantee for number of bends
- Improve in two steps:

- So far: Linear time, quadratic area, bi-monotonicity, but no guarantee for number of bends
- Improve in two steps:
 - Cut and stretch at edges whose two endpoints have a larger y- than x-distance

- So far: Linear time, quadratic area, bi-monotonicity, but no guarantee for number of bends
- Improve in two steps:
 - Cut and stretch at edges whose two endpoints have a larger y- than x-distance
 - Compute new y-coordinates

- So far: Linear time, quadratic area, bi-monotonicity, but no guarantee for number of bends
- Improve in two steps:
 - Cut and stretch at edges whose two endpoints have a larger y- than x-distance
 - Compute new y-coordinates
 - ▶ n-1 edges without bends, $O(n^4)$ area

- So far: Linear time, quadratic area, bi-monotonicity, but no guarantee for number of bends
- Improve in two steps:

Cut and stretch at edges whose two endpoints have a larger y - than x distance

• Compute new y-coordinates $O(n^3)$

hightarrow n-1 edges without bends, $\frac{O(n^4)}{O(n^4)}$ area

Thanks to the anonymous reviewers!

Now: steep mountains as contour

- Now: steep mountains as contour
- $x(v_k)$ is fixed

Now: steep mountains as contour
 x(v_k) is fixed => ensure one edge of complexity 1

Now: steep mountains as contour
 x(v_k) is fixed => ensure one edge of complexity 1

- Now: steep mountains as contour
- $\blacktriangleright x(v_k)$ is fixed \implies ensure one edge of complexity 1
- Use highest candidate position to ensure planarity and contour condition

Relations

Complexity

Relations

- Higher degree: (smooth) *d*-linear drawings
- Relations of smooth d-linear and 2d-linear on max-degree d

Complexity

Relations

- Higher degree: (smooth) d-linear drawings
- Relations of smooth d-linear and 2d-linear on max-degree d

Complexity

Complexity of general bendless smooth orthogonal and octilinear drawing problems on max-degree 4 graphs

Relations

- Higher degree: (smooth) d-linear drawings
- Relations of smooth d-linear and 2d-linear on max-degree d

Complexity

Complexity of general bendless smooth orthogonal and octilinear drawing problems on max-degree 4 graphs

- Generalize bend reduction to non-triangulated planar graphs
- Bend reduction for the octilinear model

Relations

- Higher degree: (smooth) d-linear drawings
- Relations of smooth d-linear and 2d-linear on max-degree d

Complexity

Complexity of general bendless smooth orthogonal and octilinear drawing problems on max-degree 4 graphs

Kandinsky Drawings

- Generalize bend reduction to non-triangulated planar graphs
- Bend reduction for the octilinear model

Thanks for your attention!