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Drawing Big Graphs using Spectral Sparsification

1. Background
a) Big graphs
b) Sparsification
c) Spectra of graphs
d) Spectral sparsification
2. Spectral Sparsification for Graph Drawing
a) Deterministic Spectral Sparsification (DSS) algorithm
b) Stochastic Spectral Sparsification (SSS) algorithm
3. Testing DSS and SSS
a) Two typical examples
b) An atypical example
c) Experiments
4. Conclusion



The graph drawing pipeline
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graph G

Drawing
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Proxy graphs and spatrsification

The proxy graph drawing pipeline

Original Proxy graph Drawing

graph G G’ D’ of G’
/ Smaller graph that represents

Big the original graph

graph

For example the proxy graph G’ could be:
> (some kind of) spanning tree of G
> (some kind of) sample of G

> (some kind of) sparsification of G

If G = (V,E)and G' = (V,E') where E’ c E, then G’ is a sparsification of G




Proxy graphs and sparsification

Original 4 Drawing
graph G D of G
~1000 vertices
~22000 edges
Original Sparsification Drawing
graph G G’ D’ of G’
~1000 vertices ~1000 vertices

~22000 edges ~3000 edges




Graph spectra’

Suppose that G is an n-vertex graph.
Define:

1if(u,v) €EE

> A = adjacency matrixof G : A,, = { 0 othia

deg(u) ifu=v
0 otherwise

A\

D = degree matrix of G : D,,,, = {

> Laplacian LofG: L = D- A

> Eigenvalues/eigenvectors of G are the eigenvalues/eigenvectors of the
Laplacian L

> Spectrum of G is the 1xn vector [14, 1, ... A,,] of eigenvalues of the Laplacian,

in nondecreasing order.

1. Beware: much of the terminology in spectral
graph theory is not standardised.



Graph spectra

The main significance of the spectrum of a graph (informally) :
> If two graphs have the same spectrum, then they are structurally similar.

Connectivity = the number of zero eigenvalues. The first non-zero
eigenvalue is a measure of connectivity, called algebraic connectivity.

Clusters: Spectral clustering solves a relaxation of the ratio cut problem.

Stress: The eigenvalues measure the minimum of a kind of stress in the
graph.

Commute distance: Eigenvalues are related to random walks in the graph,
and thus to commute distances.




Graph spectra

Courant - Fischer theorem
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where X; is the set of vectors orthogonal to the first i — 1 eigenvectors.




Spectral approximation

Definition [Spielman -Teng]

Say G has Laplacian L and G’ has Laplacian L'.

If there is an € > 0 such that for every x € R",
a )xTLx p xTL'x S )xTLx
— € €
xTx xTx

xTx
then G’ is an e-spectral approximation of G .

. . xTLx
From the Courant-Fischer Theorem (4; = min ——
XEX;

):

If G' is an e-spectral approximation of G, then
> the eigenvalues and eigenvectors of G’ are close to those of G.
> (informally) G' has a similar structure to G.
> (informally) G' is a good proxy for G.



Spectral sparsification

Definition [Spielman-Teng]

If G' = (V,E") is an e-spectral approximation of G = (V,E) with E' c E,
then G’ is an e-spectral sparsification of G.

Spectral sparsification theorems [Spielman and others, 2000+]

Spectral sparsifications exist, with

> € small

> |E'| much smaller than |E|
and they can be computed efficiently.

A specific theorem [Spielman-Srivastava, 2009]

Suppose that G is an n-vertex graph, and \/iﬁ <e<1.

Then with probability at least % there is an e-spectral approximation G’ of G
with 0 (“2£*

) edges.

62




Big Graph Drawing by Spectral Sparsification

: Spectral
Big graph » sparsification
G G’

Drawing

Step 1: sparsification algorithms ¢ — G’

> Derived from proofs of
sparsification theorems

D’ of G’

Step 2: layout algorithms G' — D’
> Any layout algorithm is usable

This paper: is this a good way to draw big graphs?




Spatrsification algorithms

Two concepts for a sparsification G = (V,E) - G' = (V,E'):

/

Relative density d = %

Effective resistance r(e) of an edge e
» Regard the graph as an electrical network where each edge is
a 1-Q resistor.
» Voltage drop over an edge is the effective resistance r(e) of
an edge e when a current is applied across e.

» 1(e) can be computed simply from the Moore-Penrose
inverse (aka pseudo-inverse) of the Laplacian.




Spectral sparsification algorithms

Two specific spectral sparsification algorithms

Input. graph G, relative density d

Output: sparsification G’ of G with relative density d

DSS
(deterministic spectral sparsification)

Choose E' to be the m' edges with
highest effective resistance, with
m' = |E'| = [d|E][].

SSS
(stochastic spectral sparsification)

Repeat

» Choose an edge e uniformly at
random.

» Accept/reject e with probability
proportional to its effective
resistance.

Until G’ has relative density d




Non-spectral sparsification algorithm

Baseline sparsification algorithm, for comparison

RES
(random edge selection)

Repeat
» Choose an edge e uniformly at random.

Until G’ has relative density d

The absolute simplest
sparsification approach



Our hypothesis
> Both DSS and SSS are better than RES

Our result
> On the whole, the hypothesis holds true.



Typical example 1

GridwithBlobs
n="733
m = 62509

Most of the vertices and edges
are in two blobs, but the global
structure consists of a grid.

FM?
layout for
the whole

graph




Typical example 1 FM3

layout for
GridwithBlob I TIEliS
ri L OoDS graph
n="733
m = 62509

Sparsifications with relative density d = 1%:

SSS

RES
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Typical example 1 FIf?

layout for

GridWwithBlob e

ri 1 Oobs graph
n="733

m = 62509

RES DSS 5SS




Typical example 2

CyclesWithBlobs
n=1031
m = 22638

Most of the vertices and
edges are in five blobs,
but the global structure
consists of three cycles.

FM? layout for the whole graph



Typical example 2 FM?3

layout for

the whole

CyclesWithBlobs graph
n=1031

m = 22638

Sparsifications with relative density d = 3%:

SSS

RES




Typical example 2 FM?3

layout for

the whole

CyclesWithBlobs graph
n=1031

m = 22638

Sparsifications with relative density d = 15%:

RES | DSS




Atypical example

Can_ 144
n =144
m = 576

Globally a cycle.
FM? layout for the whole graph



Atypical example

Can_ 144
n =144
m = 576

Globally a cycle.
FM? layout for the whole graph

Sparsifications with relative density d = 40%:

RES DSS




Atypical example

Can_ 144
n =144
m = 576

Globally a cycle.
FM? layout for the whole graph

Sparsifications with relative density d = 50%:

DSS




Experiments

Sparsification algorithms FM3
DSS, SSS and RES

Big graph .| Sparsification ,| Drawing
G G’ D’ of G’
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Test: how faithful is the drawing D’ to the original graph G?




Experiments

Data

Some “defacto-benchmark” graphs: from
> Hachul library
> Walshaw’s Graph Partitioning Archive
> Sparse matrices collection
> The network repository

Some G/ON graphs:
> RNA sequence graphs
> Locally dense and globally sparse
> Generally have distinctive "stringy” shapes

Some blobby graphs:
> Randomly generated
> Contain structures that are difficult to model with sparsification
> Some large and dense parts (blobs) connected by a few edges



Experiments

Implementation
> Java and OpenIiMAJ

> Moore-Penrose inverse computed by OpenlMAJ, with Java 8, 16 GB heap,
multiple threads

> Dell XPS13,i7, 16GB memory, 512GB SSD
> Ubuntu 16.04, 20GB swap memory

Density
> DSS, SSS, and RES were run for relative density values from 1% to 100%

Layout

> Tested with several layout algorithms, but reported results are for FM?.
> Results consistent across layout algorithms.



Experiments

Quality metric
> Shape-based faithfulness
Measures how well the shape of the picture represents the graph.
Does not measure readability.

Big graph .| Sparsification ,| Drawing
G G’ D’ of G’

A 4

\ 4 \ 4

Test. how faithful is the shape of the drawing D’ to the original graph G?




Main results

- DSS/RE
-~ SSS/RE

Quality improvement over RES

Relative density %

1. For low relative density (d < 20%): Both DSS and SSS are better than RES
2. For very low relative density (d < 10%): DSS is better than SSS
3. For higher relative density (d > 30%): all methods are about the same.



Runtime

The dominant function is the Moore-Penrose inverse.

> Our experiments use standard off-the-shelf software to compute the
Moore-Penrose inverse.

> Can take several minutes

> Stochastic algorithms that are theoretically fast (O(mlog m)) are available,
but untried in practice.



Question: What is a big graph?

— Depends on
Answer. A graph G is big if screen

Every drawing of G has a blob, that is, / resolution
Every drawing of G is unfaithful.

Blobs
A blob occurs when

The screen does not have enough pixels to
represent the drawing precisely, that is,

The visualization function is not 1-1, that is,
The drawing is unfaithful



Conclusion

Spectral sparsification has considerable
potential for big graph drawing.



