Drawing Big Graphs using Spectral Sparsification*

Peter Eades
Quan Nguyen
Seok-Hee Hong

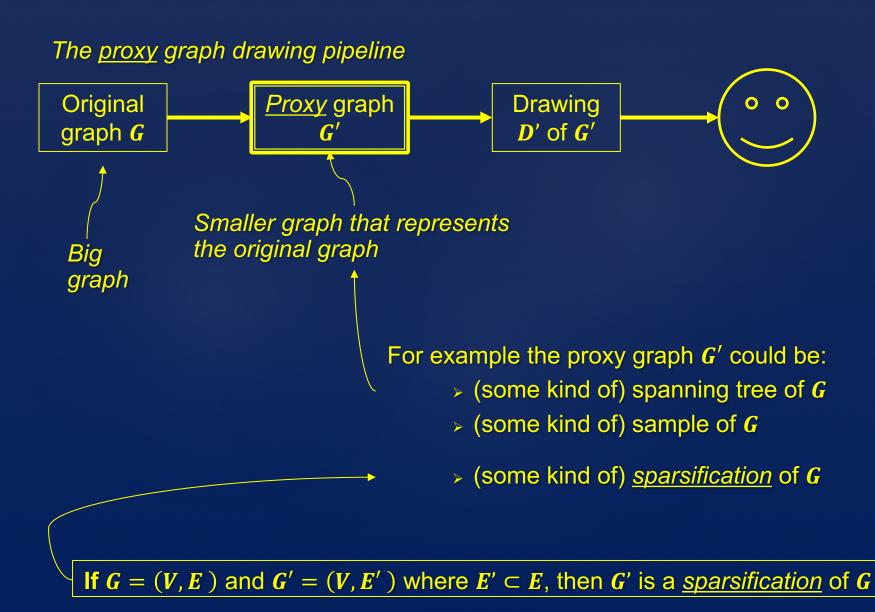
University of Sydney

*Supported by the Australian Research Council, Tom Sawyer Software, and NewtonGreen Technologies

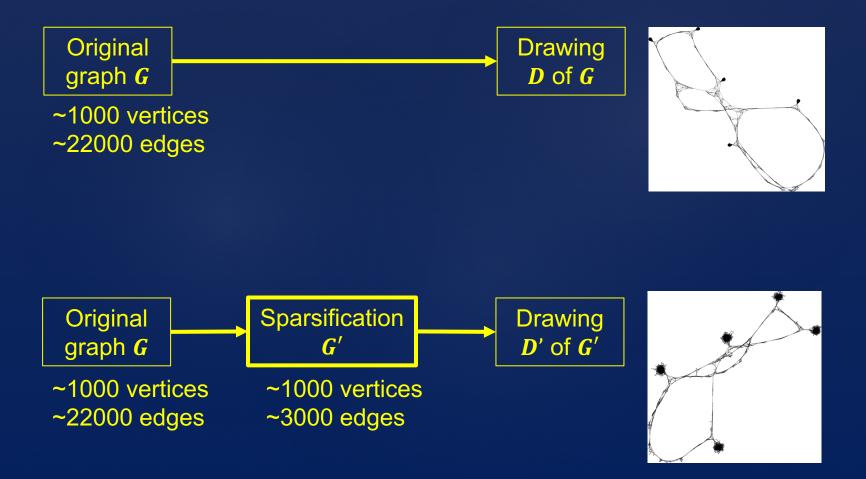
Drawing Big Graphs using Spectral Sparsification

- 1. Background
 - a) Big graphs
 - b) Sparsification
 - c) Spectra of graphs
 - d) Spectral sparsification
- 2. Spectral Sparsification for Graph Drawing
 - a) Deterministic Spectral Sparsification (DSS) algorithm
 - b) Stochastic Spectral Sparsification (SSS) algorithm
- 3. Testing **DSS** and **SSS**
 - a) Two typical examples
 - b) An atypical example
 - c) Experiments
- 4. Conclusion

The graph drawing pipeline



Proxy graphs and sparsification



Graph spectra1

Suppose that G is an n-vertex graph.

Define:

$$A =$$
adjacency matrix of $G : A_{uv} = \begin{cases} 1 \text{ if } (u, v) \in E \\ 0 \text{ otherwise} \end{cases}$

$$D =$$
 degree matrix of $G: D_{uv} = \begin{cases} deg(u) & \text{if } u = v \\ 0 & \text{otherwise} \end{cases}$

- \triangleright Laplacian L of G: L = D A
- Eigenvalues/eigenvectors of G are the eigenvalues/eigenvectors of the Laplacian L
- > Spectrum of G is the $1 \times n$ vector $[\lambda_1, \lambda_2, ... \lambda_n]$ of eigenvalues of the Laplacian, in nondecreasing order.

1. Beware: much of the terminology in spectral graph theory is not standardised.

Graph spectra

The main significance of the spectrum of a graph (informally):

- > If two graphs have the same spectrum, then they are structurally similar.
 - <u>Connectivity</u> = the number of zero eigenvalues. The first non-zero eigenvalue is a measure of connectivity, called *algebraic connectivity*.
 - · Clusters: Spectral clustering solves a relaxation of the ratio cut problem.
 - Stress: The eigenvalues measure the minimum of a kind of stress in the graph.
 - <u>Commute distance</u>: Eigenvalues are related to random walks in the graph, and thus to commute distances.

Graph spectra

Courant - Fischer theorem

$$\lambda_i = \min_{x \in X_i} \frac{x^T L x}{x^T x} = \min_{x \in X_i} \left(\frac{1}{x^T x} \sum_{(u,v) \in E} (x_u - x_v)^2 \right)$$

where X_i is the set of vectors orthogonal to the first i-1 eigenvectors.

Spectral approximation

Definition [Spielman -Teng]

Say G has Laplacian L and G' has Laplacian L'.

If there is an $\epsilon > 0$ such that for every $x \in \mathbb{R}^n$,

$$(1 - \epsilon) \frac{x^T L x}{x^T x} < \frac{x^T L' x}{x^T x} < (1 + \epsilon) \frac{x^T L x}{x^T x}$$

then G' is an ϵ -spectral approximation of G.

From the Courant-Fischer Theorem $(\lambda_i = \min_{x \in X_i} \frac{x^T L x}{x^T x})$:

If G' is an ϵ -spectral approximation of G, then

- \triangleright the eigenvalues and eigenvectors of G' are close to those of G.
- \triangleright (informally) G' has a similar structure to G.
- \rightarrow (informally) G' is a good proxy for G.

Spectral sparsification

Definition [Spielman-Teng]

If G' = (V, E') is an ϵ -spectral approximation of G = (V, E) with $E' \subset E$, then G' is an ϵ -spectral sparsification of G.

Spectral sparsification theorems [Spielman and others, 2000+]

Spectral sparsifications exist, with

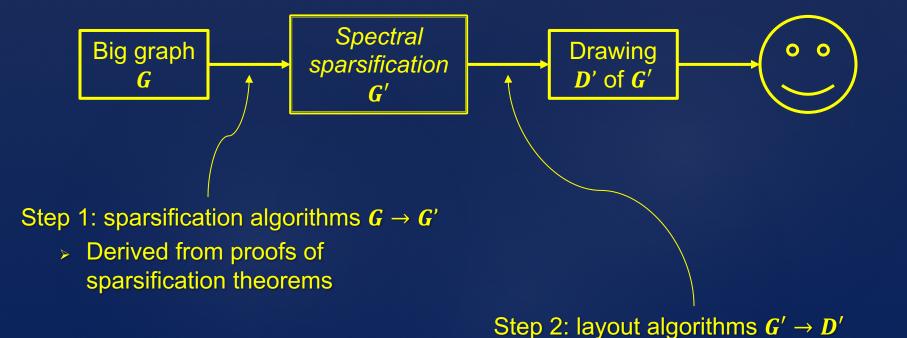
- $\succ \epsilon \text{ small}$
- \rightarrow |E'| much smaller than |E| and they can be computed efficiently.

A specific theorem [Spielman-Srivastava, 2009]

Suppose that G is an n-vertex graph, and $\frac{1}{\sqrt{n}} < \epsilon < 1$.

Then with probability at least $\frac{1}{2}$, there is an ϵ -spectral approximation G' of G with $O\left(\frac{n\log n}{\epsilon^2}\right)$ edges.

Big Graph Drawing by Spectral Sparsification



> Any layout algorithm is usable

This paper: is this a good way to draw big graphs?

Sparsification algorithms

Two concepts for a sparsification $G = (V, E) \rightarrow G' = (V, E')$:

Relative density
$$d = \frac{|E'|}{|E|}$$

Effective resistance r(e) of an edge e

- \triangleright Regard the graph as an electrical network where each edge is a 1- Ω resistor.
- \triangleright Voltage drop over an edge is the <u>effective resistance</u> r(e) of an edge e when a current is applied across e.
- r(e) can be computed simply from the <u>Moore-Penrose</u> inverse (aka pseudo-inverse) of the Laplacian.

Spectral sparsification algorithms

Two specific spectral sparsification algorithms

 \underline{Input} : graph G, relative density d

<u>Output</u>: sparsification G' of G with relative density d

DSS

(deterministic spectral sparsification)

Choose E' to be the m' edges with highest effective resistance, with m' = |E'| = [d|E|].

SSS

(stochastic spectral sparsification)

<u>Repeat</u>

- Choose an edge e uniformly at random.
- Accept/reject e with probability proportional to its effective resistance.

Until G' has relative density d

Non-spectral sparsification algorithm

Baseline sparsification algorithm, for comparison

RES

(random edge selection)

<u>Repeat</u>

Choose an edge e uniformly at random.

Until G' has relative density d

The absolute simplest sparsification approach

Our hypothesis

Both DSS and SSS are better than RES

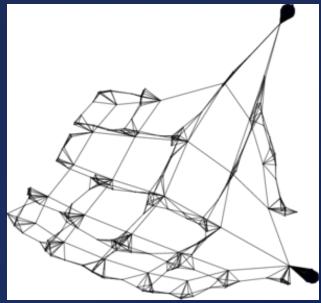
Our result

> On the whole, the hypothesis holds true.

GridWithBlobs

- n = 733
- m = 62509
- Most of the vertices and edges are in two blobs, but the global structure consists of a grid.

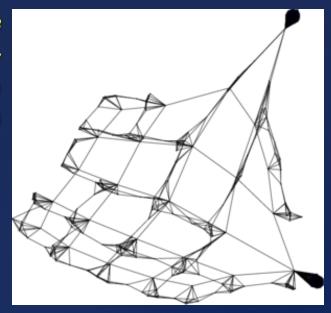
FM³
layout for the whole graph



GridWithBlobs

- n = 733
- m = 62509

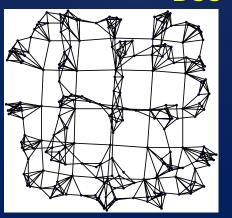
FM³
layout for the whole graph



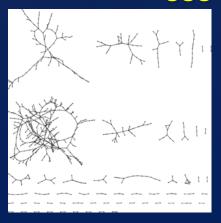
Sparsifications with relative density d = 1%:

RES

DSS



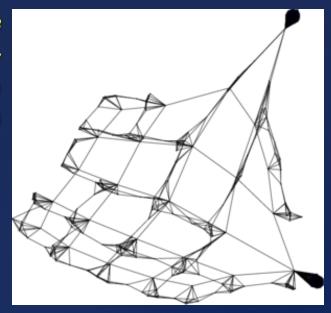
SSS



GridWithBlobs

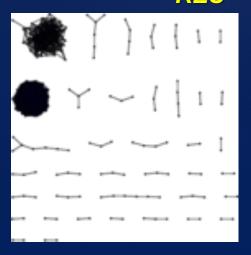
- n = 733
- m = 62509

FM³
layout for the whole graph

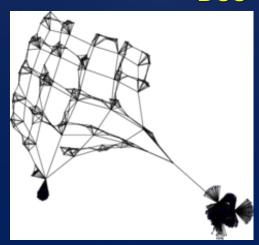


Sparsifications with relative density d = 10%:

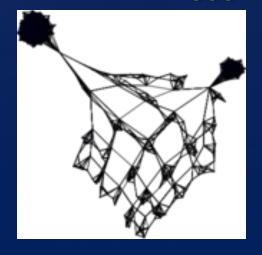
RES



DSS

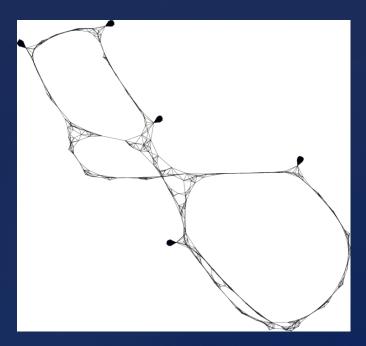


SSS



CyclesWithBlobs

- n = 1031
- m = 22638
- Most of the vertices and edges are in five blobs, but the global structure consists of three cycles.

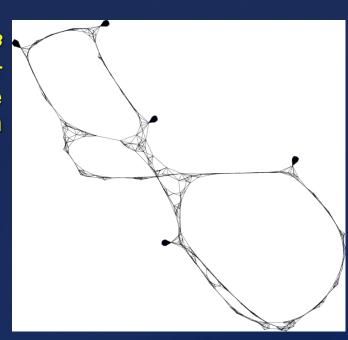


FM³ layout for the whole graph

CyclesWithBlobs

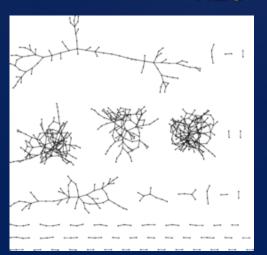
- n = 1031
- m = 22638

FM³
layout for the whole graph

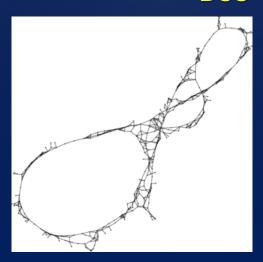


Sparsifications with relative density d = 3%:

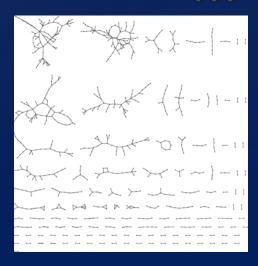
RES



DSS



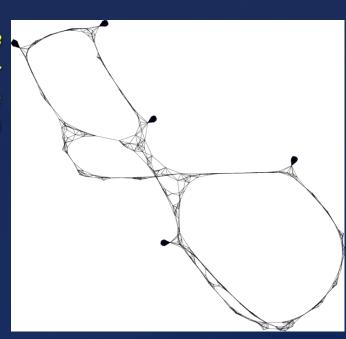
SSS



CyclesWithBlobs

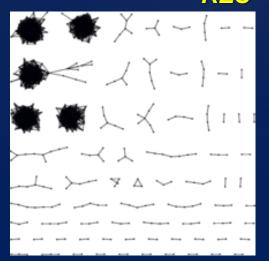
- n = 1031
- m = 22638

FM³ layout for the whole graph

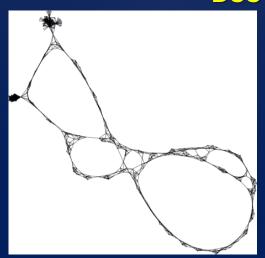


Sparsifications with relative density d = 15%:

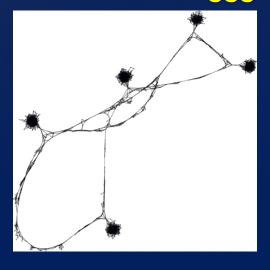
RES



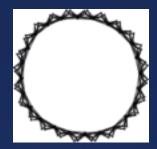
DSS



SSS



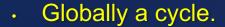
- n = 144
- m = 576
- Globally a cycle.

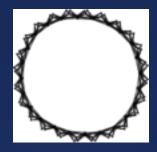


FM³ layout for the whole graph

Can_144

- n = 144
- $\cdot \quad m = 576$



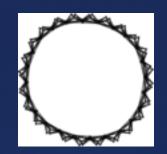


FM³ layout for the whole graph

Sparsifications with relative density d = 40%:

Can_144

- n = 144
- m = 576
- Globally a cycle.

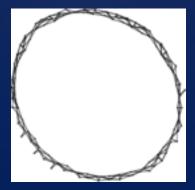


FM³ layout for the whole graph

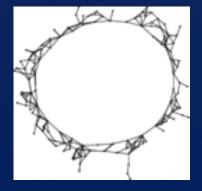
Sparsifications with relative density d = 50%:

RES

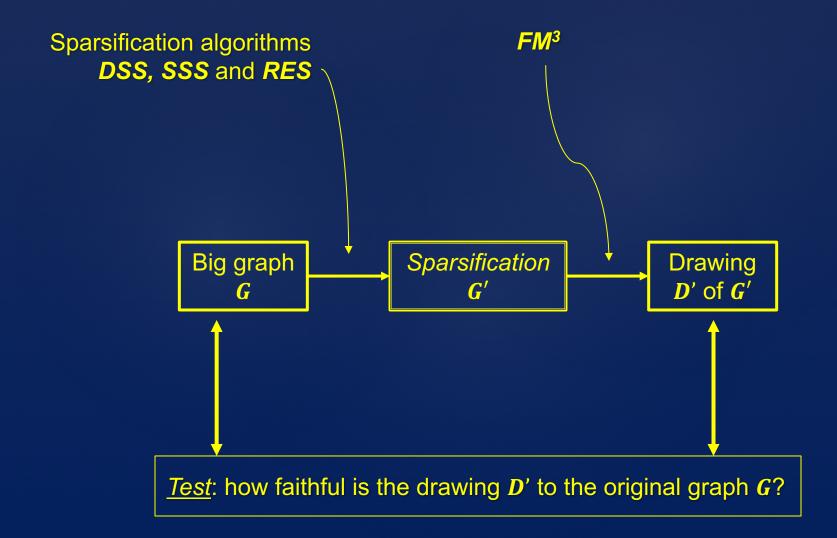
DSS



SSS



Experiments



Experiments

Data

Some "defacto-benchmark" graphs: from

- Hachul library
- Walshaw's Graph Partitioning Archive
- Sparse matrices collection
- The network repository

Some *GION* graphs:

- > RNA sequence graphs
- Locally dense and globally sparse
- Generally have distinctive "stringy" shapes

Some **blobby** graphs:

- Randomly generated
- Contain structures that are difficult to model with sparsification
- Some large and dense parts (blobs) connected by a few edges

Experiments

Implementation

- Java and OpenIMAJ
- Moore-Penrose inverse computed by OpenIMAJ, with Java 8, 16GB heap, multiple threads
- Dell XPS13, i7, 16GB memory, 512GB SSD
- Ubuntu 16.04, 20GB swap memory

Density

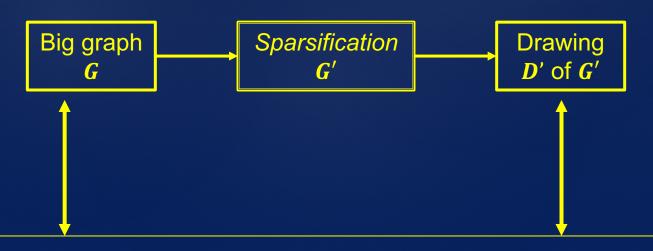
> **DSS**, **SSS**, and **RES** were run for relative density values from 1% to 100%

Layout

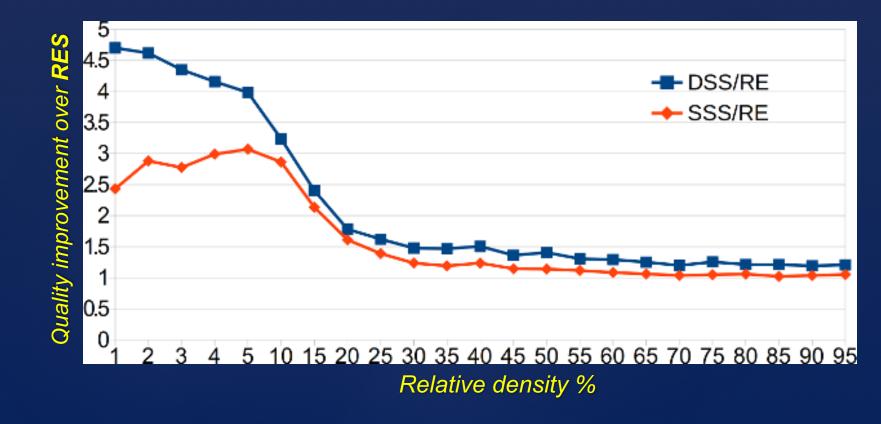
- Tested with several layout algorithms, but reported results are for FM³.
- Results consistent across layout algorithms.

Quality metric

- Shape-based faithfulness
 - Measures how well the shape of the picture represents the graph.
 - Does not measure readability.



Test: how faithful is the *shape* of the drawing **D**' to the original graph **G**?



- 1. For low relative density (d < 20%): Both **DSS** and **SSS** are better than **RES**
- 2. For very low relative density (d < 10%): **DSS** is better than **SSS**
- 3. For higher relative density (d > 30%): all methods are about the same.

Runtime

The dominant function is the Moore-Penrose inverse.

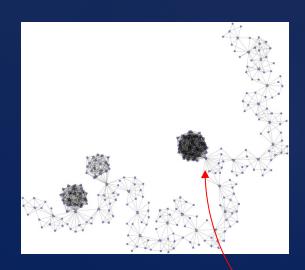
- Our experiments use standard off-the-shelf software to compute the Moore-Penrose inverse.
- > Can take several minutes
- > Stochastic algorithms that are theoretically fast $(O(m \log m))$ are available, but untried in practice.

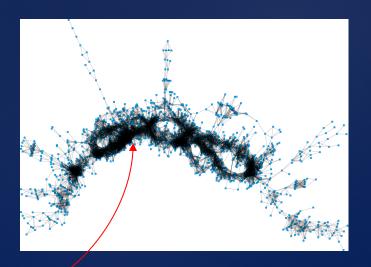
Question: What is a **big** graph?

Answer: A graph G is big if

- Every drawing of G has a blob, that is,
- Every drawing of *G* is unfaithful.

Depends on screen resolution





Blobs

A blob occurs when

- The screen does not have enough pixels to represent the drawing precisely, that is,
- The visualization function is not 1-1, that is,
- The drawing is unfaithful

Conclusion

Spectral sparsification has considerable potential for big graph drawing.