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The Value of Big Graphs

The analysis of large-scale graphs provides valuable insights
in different application scenarios: web analysis, social
networking, content ranking and recommendations...

http://internet-map.net



How to Process Big Data

The Big Data processing paradigm: distribute the input to a
cluster of inexpensive computers, process the data locally as
much as possible, exchange the results
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How to Process Big Graphs

Many technologies inspired by this paradigm, among them:
• Google Pregel/Apache Giraph for graphs



How to Process Big Graphs

Think-Like-A-Vertex (TLAV) programming model: design
the algorithm from the vertex perspective...

HOW DO THEY WORK?

Many technologies inspired by this paradigm, among them:
• Google Pregel/Apache Giraph for graphs
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Profiling Massive Computations

TLAV-based graph processing systems are being adopted by
a growing number of applications...but profiling and
debugging their massive computations remain time
consuming and error-prone tasks...
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Contribution

GiViP (Giraph Visual Profiler):
• it collects the data related to messages exchanged by

pairs of computing units throughout a computation
• it constructs suitable aggregations of these data, and
• it offers an interactive visual interface to explore the data
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Contribution

We discuss key usage scenarios of GiViP such as:
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Contribution

We discuss key usage scenarios of GiViP such as:
• overloaded computing units, and
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Contribution

We discuss key usage scenarios of GiViP such as:
• overloaded computing units, and
• anomalous message patterns.
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The TLAV Processing Model

First, the input graph is partioned into k parts, with k equal
to the number of workers (computation threads, ≥ 1 per
computer) available in the cluster

Partitioner



The TLAV Processing Model

First, the input graph is partioned into k parts, with k equal
to the number of workers (computation threads, ≥ 1 per
computer) available in the cluster

By default, the partitioner is just a hash function...

Partitioner

v

part(v) = hash(v.ID) mod k =



The TLAV Processing Model
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The computation is divided into a set of synchronized
iterations, called supersteps

0 1 2 ... N



The TLAV Processing Model

For each superstep, every worker calls a compute function
on each of its vertices
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The TLAV Processing Model

The compute function can change the vertex ’s state based
on messages received from the previous superstep, and then
can send new messages through the vertex’s outgoing edges.

function compute(Vertex vertex, Message[] messages)

foreach msg in messages

max = Math.max(max, msg)

sendMessage(edge, new Message(vertex.value))

foreach edge in vertex.outEdges

if vertex.value < max

int max = 0

vertex.value = max

else
vertex.voteToHalt()



The TLAV Processing Model
At the end of each superstep, the sent messages are
delivered to be used in the next superstep

0 1 2 ... N
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The TLAV Processing Model
A computation terminates when all vertices voted to halt
and there are no more messages to be delivered
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GiViP: Giraph Visual Profiler



Profiling TLAV Computations: Tasks

T1 Analyze the performance trend of a computation in
terms of running time and traffic load (to evaluate the
scalability of a distributed algorithm and to detect possible
bottlenecks)

T2 Analyze the traffic between pairs of computing units
(workers, hosts, racks) (to detect overloaded links at
different levels of the cluster)

T3 Analyze data aggregated at different computing scale
and time scale (to handle very large clusters or very long
computations)



GiViP: Data Model

We use an inclusion tree T to represent the cluster hierarchy

...

CLUSTER

RACK 1 RACK 2 RACK r

... WORK. wWORK. 1 WORK. 2

HOST h...HOST 3

WORK. 3 WORK. 4

HOST 2HOST 1

R
A

C
K

1

R
A

C
K

2

R
A

C
K

3



GiViP: Data Model

For each superstep i, the data exchanged by the workers are modeled
as a weighted digraph Gi = (Vi, Ei)

0 1 2 ... Ni

Gi

Each worker has a weight equal to
its execution time

Each link has two weights equal to
the # of messages and bytes
exchanged
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GiViP: Data Aggregation

Hierarchy aggregation: merge workers based on their
membership to the same host or rack

Gi
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GiViP: Data Aggregation

Temporal aggregation: grouping consecutive supersteps in a
single frame
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The interface is divided into three complementary and
coordinated views.



Interface

FRAME
VIEW

CLUSTER
VIEW

DETAILS

TREND VIEW

AGGREGATION
PANEL

The interface is divided into three complementary and
coordinated views.



Aggregation Panel

It contains two sliders to aggregate the data:

1 90

Temporal Aggregation (Supersteps)

Worker Rack

Hierarchy Aggregation

Host

10 3020 5040 60 70 80
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Cluster View
It contains a treemap visualization of the cluster hierarchy:
• the size of a tile is proportional to the # of vertices

assigned to that unit (by the partitioner)
• by clicking on a tile the corresponding unit is filtered

in/out (based on its state)
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Trend View

For each computing unit (worker/host/rack), it shows the
evolution throughout the computation of running time, # of
exchanged messages, and # of exchanged bytes



Trend View
It consists of 3 small multiples, vertically stacked and with a
shared time axis (split-space visualizations are particularly
robust against various concurrent time series for tasks that
need large visual spans)
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Frame View

Here we depict the traffic load between pairs of computing
units thoughout the whole computation...

dynamic
network

visualization?



Frame View

let’s see it!

The edge weights change, not the edges...
We implemented an enhanced version of the chord diagram.

Here we depict the traffic load between pairs of computing
units thoughout the whole computation...



Frame View
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Frame View
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Interaction



Usage Scenario: Anomalous Message Pattern

We injected a bug in the SSSP algorithm: We added a piece
of code that delivers messages to the neighbors of a vertex
even if its best-known distance does not change...

...this causes unnecessary messages, but does not affect the
correctness of the algorithm!

Flat instead
of increasing-
decreasing
heartbeat

...expected...



Usage Scenario: Anomalous Message Pattern

We injected a bug in the SSSP algorithm: We added a piece
of code that delivers messages to the neighbors of a vertex
even if its best-known distance does not change...

...this causes unnecessary messages, but does not affect the
correctness of the algorithm!

Messages evenly
distributed among the
workers



Future Research

Main limit: the Frame View requires the usage of filters
and/or aggregations if more than a few tens of vertices need
to be displayed (the chord diagram suffers from edge
clutter) → Matrix-based representations?

Temporal queries (timebox widgets)

Detection of HW failures



Future Research

Main limit: the Frame View requires the usage of filters
and/or aggregations if more than a few tens of vertices need
to be displayed (the chord diagram suffers from edge
clutter) → Matrix-based representations?

Temporal queries (timebox widgets)
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