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The Value of Big Graphs

The analysis of large-scale graphs provides valuable insights
in different application scenarios: web analysis, social
networking, content ranking and recommendations...
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How to Process Big Data

The Big Data processing paradigm: distribute the input to a
cluster of inexpensive computers, process the data locally as
much as possible, exchange the results
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How to Process Big Graphs

Many technologies inspired by this paradigm, among them:
e Google Pregel/Apache Giraph for graphs
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e Google Pregel/Apache Giraph for graphs

HOW DO THEY WORK?
Think-Like-A-Vertex (TLAV) programming model: design
the algorithm from the vertex perspective...
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Profiling Massive Computations

TLAV-based graph processing systems are being adopted by
a growing number of applications...but profiling and
debugging their massive computations remain time
consuming and error-prone tasks...
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Contribution

GiViP (Giraph Visual Profiler):
e it collects the data related to messages exchanged by
pairs of computing units throughout a computation
e it constructs suitable aggregations of these data, and
e it offers an interactive visual interface to explore the data
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Contribution

We discuss key usage scenarios of GiViP such as:
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Contribution

We discuss key usage scenarios of GiViP such as:
e overloaded computing units, and
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Contribution

We discuss key usage scenarios of GiViP such as:
e overloaded computing units, and
e anomalous message patterns.
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The TLAV Processing Model

First, the input graph is partioned into k£ parts, with k equal
to the number of workers (computation threads, > 1 per
computer) available in the cluster
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The TLAV Processing Model

First, the input graph is partioned into k£ parts, with k equal
to the number of workers (computation threads, > 1 per
computer) available in the cluster

By default, the partitioner is just a hash function...

part(v) = hash(v.ID) mod k =
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The TLAV Processing Model

The computation is divided into a set of synchronized
iterations, called supersteps
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The TLAV Processing Model

For each superstep, every worker calls a compute function
on each of its vertices

function compute(...)

function compute(...) v
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The TLAV Processing Model

The compute function can change the vertex 's state based
on messages received from the previous superstep, and then
can send new messages through the vertex's outgoing edges.

function compute(Vertex vertex, Message[| messages)
int max = 0
foreach msg in messages
max = Math.max(max, msg)
if vertex.value < max
vertex.value = max
foreach edge in vertex.outEdges
sendMessage(edge, new Message(vertex.value))

else
vertex.voteToHalt()



The TLAV Processing Model

At the end of each superstep, the sent messages are
delivered to be used in the next superstep
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The TLAV Processing Model

A computation terminates when all vertices voted to halt
and there are no more messages to be delivered




GiViP: Giraph Visual Profiler

GIVIP: Giraph Profiler » Analytics for job_14963336TETE0_0007
o Aggregation Panel © Frame View E1CTE I3 1Y wessages [l
Filber I:]-IJ.FI'
° B
1 AT, 1

Temporal Aggregation

i awpeTaicga =2
HigrarciTy Aggregatan
Lo Hoet Reck

& Pmines informaticn

Hower mouse on Chord Diagram 1o daplay
cursor information

M Supersiens @ Duraion

22 0000205

B Messages H Bytes
416.3k 7.0M

Framas fom 0 to 22

@ Trend View: Rurning tmes (ms)
] -] s Ei] 0EE 1300
100
1]
a
1m
s
]
100
]
o
1m
& |
ol H H H r !
100
]
1]

& Trend View: Messages
82 Trend View: Bytes



Profiling TLAV Computations: Tasks

T1 Analyze the performance trend of a computation in
terms of running time and traffic load (to evaluate the
scalability of a distributed algorithm and to detect possible
bottlenecks)

T2 Analyze the traffic between pairs of computing units
(workers, hosts, racks) (to detect overloaded links at
different levels of the cluster)

T3 Analyze data aggregated at different computing scale
and time scale (to handle very large clusters or very long
computations)



GiViP: Data Model

We use an inclusion tree T to represent the cluster hierarchy
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GiViP: Data Model

For each superstep 7, the data exchanged by the workers are modeled
as a weighted digraph G; = (V;, E;)
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GiIViP: Data Aggregation

Hierarchy aggregation: merge workers based on their
membership to the same host or rack

1.1-10%ms




GiIViP: Data Aggregation

Temporal aggregation: grouping consecutive supersteps in a
single frame




Interface

The interface is divided into three complementary and
coordinated views.
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Aggregation Panel

It contains two sliders to aggregate the data:

Temporal Aggregation (Supersteps)

1 10 20 30 40 50 60 70 380 90

Hierarchy Aggregation

Worker Host Rack
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Cluster View

It contains a treemap visualization of the cluster hierarchy:
e the size of a tile is proportional to the # of vertices
assigned to that unit (by the partitioner)
e by clicking on a tile the corresponding unit is filtered
in/out (based on its state)
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Trend View

For each computing unit (worker/host/rack), it shows the
evolution throughout the computation of running time, # of
exchanged messages, and # of exchanged bytes
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Trend View

It consists of 3 small multiples, vertically stacked and with a
shared time axis (split-space visualizations are particularly
robust against various concurrent time series for tasks that
need large visual spans)
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Interface

The interface is divided into three complementary and
coordinated views.
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Frame View

Here we depict the traffic load between pairs of computing
units thoughout the whole computation...

dynamic
network
visualization?




Frame View

Here we depict the traffic load between pairs of computing
units thoughout the whole computation...

The edge weights change, not the edges...
We implemented an enhanced version of the chord diagram.

let’'s see it!
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O Frame View M M| PEKG | M| P Messageﬂ. Bytes

ouT
BN RACK

HOST

WORKER
(INCOMING)

WORKER
(OUTGOING)

EXCHANGED
MESSAGES

CROSSING
MINIMIZATION




Frame View

Hi M

|| M| ®EKG

X
O
<
o

HOST




Interaction




Usage Scenario: Anomalous Message Pattern

We injected a bug in the SSSP algorithm: We added a piece
of code that delivers messages to the neighbors of a vertex
even if its best-known distance does not change...

...this causes unnecessary messages, but does not affect the

correctness of the algorithm!
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Usage Scenario: Anomalous Message Pattern

We injected a bug in the SSSP algorithm: We added a piece
of code that delivers messages to the neighbors of a vertex
even if its best-known distance does not change...

...this causes unnecessary messages, but does not affect the
correctness of the algorithm!

Messages evenly
distributed among the
workers




Future Research

Main limit: the Frame View requires the usage of filters
and/or aggregations if more than a few tens of vertices need
to be displayed (the chord diagram suffers from edge
clutter) — Matrix-based representations?

Temporal queries (timebox widgets)

Detection of HW failures
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