Drawing Trees on Fixed Points with L-shaped Edges

Martin Derka
mderka@uwaterloo.ca

David R. Cheriton School of Computer Science
University of Waterloo

GD 2017

September 26, 2017
Joint work with T. Biedl, T. Chan, K. Jain, A. Lubiw.

UNIVERSITY OF

WATERLOO

Goal: Draw a tree on a fixed set of points in general position so that every edge has the shape of an L.

Goal: Draw a tree on a fixed set of points in general position so that every edge has the shape of an L .

How many points do you need so that any tree can be drawn this way?

- $O\left(n^{2}\right)$ points always suffice for planar graphs
[de Fraysseix et al., Schnyder, 1990]
- $O\left(n^{2}\right)$ points always suffice for planar graphs
[de Fraysseix et al., Schnyder, 1990]
- Lower bound $c \cdot n$ for some $c>1$ for planar graphs
[Chrobak + Karloff, 1989]
- $O\left(n^{2}\right)$ points always suffice for planar graphs
[de Fraysseix et al., Schnyder, 1990]
- Lower bound $c \cdot n$ for some $c>1$ for planar graphs
[Chrobak + Karloff, 1989]
- Maximum degree 4 graphs studied first in 2010
[Katz et al., 2010]
- Any tree of maximum degree 4 can be embedded on $n^{2}-2 n+2$ points
[Di Giacomo et al., 2013]
- $O\left(n^{2}\right)$ points always suffice for planar graphs
[de Fraysseix et al., Schnyder, 1990]
- Lower bound $c \cdot n$ for some $c>1$ for planar graphs
[Chrobak + Karloff, 1989]
- Maximum degree 4 graphs studied first in 2010
[Katz et al., 2010]
- Any tree of maximum degree 4 can be embedded on $n^{2}-2 n+2$ points
[Di Giacomo et al., 2013]
- $O\left(n^{\log _{2} 3 \approx 1.585}\right)$ points suffice for any maximum degree 4 tree
[Aichholzer et al., 2016]
- $O\left(n^{2}\right)$ points always suffice for planar graphs
[de Fraysseix et al., Schnyder, 1990]
- Lower bound $c \cdot n$ for some $c>1$ for planar graphs
[Chrobak + Karloff, 1989]
- Maximum degree 4 graphs studied first in 2010
[Katz et al., 2010]
- Any tree of maximum degree 4 can be embedded on $n^{2}-2 n+2$ points
[Di Giacomo et al., 2013]
- $O\left(n^{\log _{2} 3 \approx 1.585}\right)$ points suffice for any maximum degree 4 tree
[Aichholzer et al., 2016]
- Nothing better known for maximum degree 3 trees

Our paper: Improvements on pointsets sufficient to draw maximum degree 3 and 4 trees

This talk: Maximum degree 3 trees (binary trees)

Main idea:

- Draw the tree inside a rectangle.
- Partition the tree inside subrectangles and draw the subtrees recursively inside those.

(1) f-configuration: downward ray into Q is reserved $f(n)$: the number of points sufficient to draw a tree

(1) f-configuration: downward ray into Q is reserved $f(n)$: the number of points sufficient to draw a tree
(2) g-configuration: rightward ray with bend into Q is reserved, and possibly also downward if the position of p allows $g(n)$: the number of points sufficient to draw a tree

Drawing method f-draw-1

Assume that Q has $f(n)$ points.

- h : the highest half-grid line s.t. Q_{L} or Q_{R} has $f\left(n_{1}\right)$ points
- r_{0} : the bottommost point of Q_{L}

Observe that:

- $f(n) \leq 2 f\left(n_{1}\right)+g\left(n_{2}\right)$
- $f(n) \leq 2 g\left(n_{1}\right)+f\left(n_{2}\right)$ by swapping f and g

Drawing method g-draw

Assume that Q has $g(n)$ points.

- h : the highest half-grid line s.t. top rectangle Q_{A} has $f\left(n_{1}\right)$ points
- r_{0} : the rightmost point of Q_{A}

Observe:

- if a point right of p exists: $g(n) \leq f\left(n_{1}\right)+g\left(n_{2}\right)$

Observe:

- if a point right of p exists: $g(n) \leq f\left(n_{1}\right)+g\left(n_{2}\right)$
- if no point right of p exists: use f-draw- 1 with Q_{R} empty, so: $g(n) \leq f\left(n_{1}\right)+g\left(n_{2}\right)$

Drawing method f-draw-2

Assume that Q has $f(n)$ points.

- h : the highest half-grid line s.t. Q_{L} or Q_{R} has $g\left(n_{1}\right)$ points
- two cases depending on size of Q_{R}

Drawing method f-draw-2

Assume that Q has $f(n)$ points.

- h : the highest half-grid line s.t. Q_{L} or Q_{R} has $g\left(n_{1}\right)$ points
- Case 1: $\left|Q_{R}\right|<g\left(n_{2,1}\right)$: Use $g\left(n_{1}\right)+g\left(n_{2,1}\right)+f\left(n_{2}\right)-1$ points

Drawing method f-draw-2

Assume that Q has $f(n)$ points.

- h : the highest half-grid line s.t. Q_{L} or Q_{R} has $g\left(n_{1}\right)$ points
- Case 2: $\left|Q_{R}\right| \geq g\left(n_{2,1}\right), k \geq n$
- Di Giacomo et al.: any tree of can be embedded on a diagonal point set with n points

Drawing method f-draw-2

Assume that Q has $f(n)$ points.

- h : the highest half-grid line s.t. Q_{L} or Q_{R} has $g\left(n_{1}\right)$ points
- Case 2: $\left|Q_{R}\right| \geq g\left(n_{2,1}\right), k<n: \quad 2 g\left(n_{1}\right)+n+f\left(n_{2,2}\right)-1$ points

Putting everything together:

(1) $f(n) \leq 2 f\left(n_{1}\right)+g\left(n_{2}\right)$
(2) $f(n) \leq 2 g\left(n_{1}\right)+f\left(n_{2}\right)$
(3) $g(n) \leq f\left(n_{1}\right)+g\left(n_{2}\right)$
(4) $f(n) \leq \max \left\{g\left(n_{1}\right)+g\left(n_{2,1}\right)+f\left(n_{2}\right), 2 g\left(n_{1}\right)+f\left(n_{2,2}\right)+n\right\}$

Putting everything together:
(1) $f(n) \leq 2 f\left(n_{1}\right)+g\left(n_{2}\right)$
(2) $f(n) \leq 2 g\left(n_{1}\right)+f\left(n_{2}\right)$
(3) $g(n) \leq f\left(n_{1}\right)+g\left(n_{2}\right)$
(4) $f(n) \leq \max \left\{g\left(n_{1}\right)+g\left(n_{2,1}\right)+f\left(n_{2}\right), 2 g\left(n_{1}\right)+f\left(n_{2,2}\right)+n\right\}$

Theorem: Any perfect binary tree with n nodes has an L-shaped drawing on any point set of size $c \cdot n^{1.142}$ for some constant c.

Putting everything together:
(1) $f(n) \leq 2 f\left(n_{1}\right)+g\left(n_{2}\right)$
(2) $f(n) \leq 2 g\left(n_{1}\right)+f\left(n_{2}\right)$
(3) $g(n) \leq f\left(n_{1}\right)+g\left(n_{2}\right)$
(4) $f(n) \leq \max \left\{g\left(n_{1}\right)+g\left(n_{2,1}\right)+f\left(n_{2}\right), 2 g\left(n_{1}\right)+f\left(n_{2,2}\right)+n\right\}$

Theorem: Any perfect binary tree with n nodes has an L-shaped drawing on any point set of size $c \cdot n^{1.142}$ for some constant c.
Theorem: Any binary tree with n nodes has an L-shaped drawing on any point set of size $c \cdot n^{1.22}$ for some constant c.

Summary of the results

The follwing number of points are sufficient for L-drawing of any with n points:

	previous	new
deg 3 perfect	$n^{1.585}$	$n^{1.142}$
deg 3 general	$n^{1.585}$	$n^{1.22}$
deg 4 perfect	$n^{1.4651}$	
deg 4 general	$n^{1.585}$	$n^{1.55}$

Summary of the results

The follwing number of points are sufficient for L-drawing of any with n points:

	previous	new
deg 3 perfect	$n^{1.585}$	$n^{1.142}$
deg 3 general	$n^{1.585}$	$n^{1.22}$
deg 4 perfect	$n^{1.4652}$	
deg 4 general	$n^{1.585}$	$n^{1.55}$

Summary of the results

The follwing number of points are sufficient for L-drawing of any with n points:

	previous	new
deg 3 perfect	$n^{1.585}$	$n^{1.142}$
deg 3 general	$n^{1.585}$	$n^{1.22}$
deg 4 perfect	$n^{1.4652}$	
deg 4 general	$n^{1.585}$	$n^{1.55}$

Ordered caterpillars: $c \cdot n \log n$ points for some constant c

Summary of the results

The follwing number of points are sufficient for L-drawing of any with n points:

	previous	new
deg 3 perfect	$n^{1.585}$	$n^{1.142}$
deg 3 general	$n^{1.585}$	$n^{1.22}$
deg 4 perfect	$n^{1.4652}$	
deg 4 general	$n^{1.585}$	$n^{1.55}$

Ordered caterpillars: $c \cdot n \log n$ points for some constant c

Thank you!

