Visualizing Co-Phylogenetic Reconciliations

*Tiziana Calamoneri*¹, *Valentino Di Donato*², *Diego Mariottini*², *and <u>Maurizio Patrignani</u>²*

1 University of Rome "Sapienza", Rome, Italy 2 Roma Tre University, Rome, Italy

Co-phylogenetic trees

Tanglegram drawings

- Tanglegram planarity
 - linear
 - [Fernau et al., J. Comput. Syst. Sci., 2010]
- Tanglegram crossing minimization
 - Polynomial for one-sided one-to-one leaf associations
 - [Dwyer and Schreiber, APVis 2004]
 - [Fernau et al., J. Comput. Syst. Sci., 2010]
 - NP-complete even for binary trees and for one-toone leaf associations
 - [Fernau et al., J. Comput. Syst. Sci., 2010]
 - NP-complete even for complete binary trees and oneto-one leaf associations
 - [Buchin et al., Algorithmica 2012]

Co-phylogenetic reconciliation

Representing reconciliations

- Three main strategies
 - 1. representing two paired trees
 - 2. parasites are drawn inside their hosts
 - 3. host tree is made of pipes and parasites are drawn into the pipes

Example of the 1st strategy

Jane 4

New metaphor: HP-drawings

New metaphor: HP-drawings

New metaphor: HP-drawings

Evolutionary phenomena

Loss:

 a parasite is transmitted to one child but not to the other child

Evolutionary phenomena

Host switch:

 a parasite is transmitted to a host that is not a descendant of the current one

Reconciliation constraints

No two host switches

 the two children of a parasite p can not correspond both to host switches

Reconciliation constraints

Time consistency

 intuitively, a reconciliation γ is time consistent if it does not imply the transmission of a parasite to a past host

Time consistent reconciliation

Reconciliation that is not time consistent

Time consistency

Planar reconciliations

- Theorem
 - Let (H,P,φ) be a co-phylogenetic tree and let γ be any time consistent reconciliation of it
 - (H,P,φ) admits a planar tanglegram drawing if and only if γ admits a planar downward HP-drawing

HP-drawing \Rightarrow Tanglegram drawing

- 1. Vertically flip the drawing of the parasite tree
- 2. Join the leaves of the two trees
- 3. Represent the host tree in a node-link fashion

Start from a planar tanglegram drawing of (H,P,φ)

- Start from a planar tanglegram drawing of (H,P,φ)
- 2. Add dummy nodes to the parasite tree to account for losses

Graph Drawing & Network Visualization - Sept. 26th 2017 - M. Patrignani

Ο

 \bigcirc

 \bigcirc

 \diamondsuit

 \diamondsuit

 \diamondsuit

 \diamondsuit

0

 \diamondsuit

 \diamondsuit

 \bigcirc

 \bigcirc

 \bigcirc

- Copy the x-coords of the leaves from the tanglegram drawing
- 4. Assign y-coords to internal nodes based on a time consistent linear ordering

- Copy the x-coords of the leaves from the tanglegram drawing
- 4. Assign y-coords to internal nodes based on a time consistent linear ordering
- 5. Assign to each internal node the x-coord of one of its non-host-switch children

Ο \bigcirc \bigcirc \bigcirc \diamondsuit \diamondsuit \diamondsuit \diamondsuit 0 \diamondsuit \diamondsuit \bigcirc \bigcirc \bigcirc

 \bigcirc

Graph Drawing & Network Visualization - Sept. 26th 2017 - M. Patrignani

- Copy the x-coords of the leaves from the tanglegram drawing
- 4. Assign y-coords to internal nodes based on a time consistent linear ordering
- 5. Assign to each internal node the x-coord of one of its non-host-switch children

6.

- 6. Add the remaining edges
- Draw each host as the smallest box containing its parasites

- 6. Add the remaining edges
- Draw each host as the smallest box containing its parasites
- 8. Horizontally enlarge the boxes to cover all non-host-switch descendants

- 6. Add the remaining edges
- Draw each host as the smallest box containing its parasites
- Horizontally enlarge the boxes to cover all non-host-switch descendants
- 9. Vertically enlarge the boxes to touch the boxes of their parents

- 6. Add the remaining edges
- Draw each host as the smallest box containing its parasites
- Horizontally enlarge the boxes to cover all non-host-switch descendants
- 9. Vertically enlarge the boxes to touch the boxes of their parents
 10. Remove dummy parasites

Crossing minimization is NP-complete

Theorem

 deciding whether a time-consistent reconciliation γ admits an HP-drawing with at most k crossings is NP-complete

Gadget: sewing trees

Recursively defined

 A sewing tree of suitable size can make extremely costly inserting a node between the two leaves h₁ and h₂

Iconic representation

The reduced problem

- We reduce crossing minimization for tanglegram drawings of two complete binary trees with one-to-one leaf associations
 - NP-complete [Buchin et al., Algorithmica 2012]

Graph Drawing & Network Visualization - Sept. 26th 2017 - M. Patrignani

Two heuristics for crossing reduction

- Heuristic SearchMaximalPlanar
 - Construct a maximal planar instance and the add the remaining edges in a post-processing step
- Heuristic ShortenHostSwitch
 - Embed the host tree in such a way to reduce the length of the host-switch links among parasites

		SearchMaximalPlanar		ShortenHostSwitch	
instance	#rec.	avg. #cross.	avg. ms	avg. #cross.	avg. ms
СМ	64	16	485	21	0.5
FD	80	91	4596	69	1
GL	2	2	67	1	0
PP	72	1	1154	3	1
RH	100	12	1701	11	2
RP	3	3	195	3	1
SC	1	4	166	6	0
SFC	16	15	355	17	0
C0G2085	100	82	17270	70	7
C0G4965	100	58	5636	97	8

Conclusions and future work

- We introduced a new metaphor that takes advantage both of the space-filling and of the node-link visualization paradigms
- Future work
 - address the problem of visually exploring and analyzing sets of reconciliations of the same co-phylogenetic tree
 - adapt heuristics for the reduction of the crossings of tanglegram drawings to HPdrawings
 - perform user-tests to assess readability

Thanks!

Any question?