

14-27 September 2017 Boston, USA

Simple Compact Monotone Tree Drawings

Anargyros Oikonomou

Antonios Symvonis

National Technical University of Athens, Greece

Monotone drawings

Monotone drawings

• A path P is <u>monotone</u> if there exists a line l such that the projections of the vertices of P on l appear on l in the same order as on P.

Monotone drawings

• A path P is <u>monotone</u> if there exists a line l such that the projections of the vertices of P on l appear on l in the same order as on P.

- 2010 Angelini, Colasante, Di Battista, Frati, Patrignani
 - $O(n^{1.6}) \times O(n^{1.6})$ (BFS-based)
 - $O(n) \times O(n^2)$ (DFS-based)
 - Ideas from number theory (Stern-Brocot trees)

- **2010** Angelini, Colasante, Di Battista, Frati, Patrignani ^[GD'10, JGAA'12]
 - $O(n^{1.6}) \times O(n^{1.6})$ (BFS-based)
 - $O(n) \times O(n^2)$ (DFS-based)
 - Ideas from number theory (Stern-Brocot trees)
- 2014 Kindermann, Schulz, Spoerhase, Wolff $[GD'^{14}]$
 - $O(n^{1.5}) \times O(n^{1.5})$
 - Based on Farey sequence

- 2010 Angelini, Colasante, Di Battista, Frati, Patrignani
 - $O(n^{1.6}) \times O(n^{1.6})$ (BFS-based)
 - $O(n) \times O(n^2)$ (DFS-based)
 - Ideas from number theory (Stern-Brocot trees)
- $2014 \ {\rm Kindermann, \ Schulz, \ Spoerhase, \ Wolff} \quad {}_{[{\rm GD}^{,}14]}$
 - $O(n^{1.5}) \times O(n^{1.5})$
 - Based on Farey sequence

2015 He, He [COCOON]

- $\ O(n^{1.205}) \times O(n^{1.205})$
- Based on Farey sequence

 $2016 {\rm He, He [TCS]}$

 $- O(n \log n) \times O(n \log n)$

 $2016 {\rm He, He [TCS]}$

- $O(n \log n) \times O(n \log n)$
- $2016~{\rm He},~{\rm He}~{\rm {\scriptscriptstyle [arXiv]}}$
 - $-12n \times 12n$
 - There exist trees which require at least $\frac{n}{12} \times \frac{n}{12}$

2016 He, He [TCS]

- $O(n \log n) \times O(n \log n)$
- $2016 {\rm He, He \ [arXiv]}$
 - $-12n \times 12n$
 - There exist trees which require at least $\frac{n}{12} \times \frac{n}{12}$

2017 Oikonomou, Symvonis [gd'17]

- $-n \times n$
- Simple weighting based on size of subtrees
- Some geometry

2017 Oikonomou, Symvonis [GD'17]

2017 Oikonomou, Symvonis [GD'17]

Complete binary (15 nodes) $[12 \times 12]$ grid

2017 Oikonomou, Symvonis [GD'17]

Complete binary (15 nodes) $[12 \times 12]$ grid

Complete binary + path (29 nodes) $[21 \times 29]$ grid

2017 Oikonomou, Symvonis [GD'17]

2017 Oikonomou, Symvonis [GD'17]

Complete ternary(13 nodes) $[9 \times 9]$ grid

2017 Oikonomou, Symvonis [GD'17]

Complete ternary(13 nodes) $[9 \times 9]$ grid

Complete ternary + path (25 nodes) $[17 \times 25]$ grid

- Let Γ be a drawing of a rooted tree T.
- Γ is called a *slope-disjoint drawing of* T if: [Angelini+]

- Let Γ be a drawing of a rooted tree T.
- Γ is called a *slope-disjoint drawing of* T if: [Angelini+]
 - 1. For every node $u \in T$, there exist angles $a_1(u)$ and $a_2(u)$, with $0 < a_1(u) < a_2(u) < \pi$, s.t. for every edge e that is either in T_u or enters u, it holds that $a_1(u) < slope(e) < a_2(u)$.

- Let Γ be a drawing of a rooted tree T.
- Γ is called a *slope-disjoint drawing of* T if: [Angelini+]
 - 1. For every node $u \in T$, there exist angles $a_1(u)$ and $a_2(u)$, with $0 < a_1(u) < a_2(u) < \pi$, s.t. for every edge e that is either in T_u or enters u, it holds that $a_1(u) < slope(e) < a_2(u)$.

 $\mathbf{k}a_1(u)$

- Let Γ be a drawing of a rooted tree T.
- Γ is called a *slope-disjoint drawing of* T if: [Angelini+]
 - 1. For every node $u \in T$, there exist angles $a_1(u)$ and $a_2(u)$, with $0 < a_1(u) < a_2(u) < \pi$, s.t. for every edge e that is either in T_u or enters u, it holds that $a_1(u) < slope(e) < a_2(u)$.

 $\widehat{a}_1(u)$

2. For every two nodes $u, v \in T$ such that v is a child of u, it holds that $a_1(u) < a_1(v) < a_2(v) < a_2(u)$.

2. For every two nodes $u, v \in T$ such that v is a child of u, it holds that $a_1(u) < a_1(v) < a_2(v) < a_2(u)$.

 $a_1(u)$

 $\langle a_2(u) \rangle$

2. For every two nodes $u, v \in T$ such that v is a child of u, it holds that $a_1(u) < a_1(v) < a_2(v) < a_2(u)$.

- 3. For every two nodes u_1, u_2 having the same parent, it holds that either
 - $a_1(u_1) < a_2(u_1) < a_1(u_2) < a_2(u_2)$ or $a_1(u_2) < a_2(u_2) < a_1(u_1) < a_2(u_1)$

- 3. For every two nodes u_1, u_2 having the same parent, it holds that either
 - $a_1(u_1) < a_2(u_1) < a_1(u_2) < a_2(u_2)$ or $a_1(u_2) < a_2(u_2) < a_1(u_1) < a_2(u_1)$

3. For every two nodes u_1, u_2 having the same parent, it holds that either $a_1(u_1) < a_2(u_1) < a_1(u_2) < a_2(u_2)$ or $a_1(u_2) < a_2(u_2) < a_1(u_1) < a_2(u_1)$ \mathcal{U}

3. For every two nodes u_1, u_2 having the same parent, it holds that either $a_1(u_1) < a_2(u_1) < a_1(u_2) < a_2(u_2)$ or $a_1(u_2) < a_2(u_2) < a_1(u_1) < a_2(u_1)$ **Theorem** [Angelini+] Every slope-disjoint drawing of a tree is monotone. \mathcal{U}

Def. Non-strictly slope disjoint tree drawing

Def. Non-strictly slope disjoint tree drawing

2. ... $a_1(u) \le a_1(v) < a_2(v) \le a_2(u)$

Def. Non-strictly slope disjoint tree drawing

Non-strictly slope disjoint tree drawings

Locating points on the grid

Locating points on the grid

Lemma. Consider two angles θ_1 , θ_2 with $0 \le \theta_1 < \theta_2 \le \frac{\pi}{4}$ and let $d = \lceil \frac{1}{\theta_2 - \theta_1} \rceil$. Then, edge *e* connecting the origin (0,0) to point $p = (d, \lfloor tan(\theta_1) \cdot d + 1 \rfloor)$ satisfies $\theta_1 < slope(e) < \theta_2$.

${\bf Lemma-AssignPoint}$

${\bf Lemma-AssignPoint}$

•
$$\frac{\pi}{4} \ge \theta_2 - \theta_1 > \arctan(\frac{1}{2})$$
:

$$\begin{cases}
p = (1,2) & \text{if } \theta_1 \ge \frac{\pi}{4} \\
p = (1,1) & \text{if } \frac{\pi}{4} > \theta_1 \ge \arctan(\frac{1}{2}) \\
p = (2,1) & \text{if } \arctan(\frac{1}{2}) > \theta_1
\end{cases}$$
 $arctan(\frac{1}{2})$
 $arctan(\frac{1}{2})$
 $arctan(\frac{1}{2})$

${\bf Lemma-AssignPoint}$

${\bf Lemma-AssignPoint}$

Consider angles θ_1 , θ_2 with $0 \le \theta_1 < \theta_2 \le \frac{\pi}{2}$ and let $d = \lceil \frac{1}{\theta_2 - \theta_1} \rceil$. Then, a grid point p such that the edge e that connects the origin (0,0) to p satisfies $\theta_1 < slope(e) < \theta_2$ can be identified as follows:

• If p = (x, y) is the identified point, it also holds that: $\max(x, y) \le \frac{\pi}{2} \cdot \frac{1}{\theta_2 - \theta_1}$

- Strategy: Balanced assignment
 - Spil the angle range of a node u to its childen in proportion to the size of the subtree rooted at each child.

- Strategy: Balanced assignment
 - Spil the angle range of a node u to its childen in proportion to the size of the subtree rooted at each child.
 - Size of angle range of child u_i : $(a_2(u) a_1(u)) \frac{|T_{u_i}|}{|T_u| 1}$

- Strategy: Balanced assignment
 - Spil the angle range of a node u to its childen in proportion to the size of the subtree rooted at each child.
 - Size of angle range of child u_i : $(a_2(u) a_1(u)) \frac{|T_{u_i}|}{|T_u| 1}$

Lemma

"Balanced assignment" leads to a non-strictly slope disjoint drawing.

Algorithm-1 Balanced Monotone Tree DrawingInput:An n-vertex tree T rooted at vertex r.Output:A monotone drawing of T on a grid of size
at most $n \times n$.

Algorithm-1 Balanced Monotone Tree DrawingInput:An n-vertex tree T rooted at vertex r.Output:A monotone drawing of T on a grid of size
at most $n \times n$.

- 1. $a_1(r) \leftarrow 0, \ a_2(r) \leftarrow \frac{\pi}{2}$
- 2. Assign in a top-down manner angle-ranges to the vertices of T using strategy "Balanced assignment".

Algorithm-1 Balanced Monotone Tree DrawingInput:An *n*-vertex tree T rooted at vertex r.Output:A monotone drawing of T on a grid of size
at most $n \times n$.

1. $a_1(r) \leftarrow 0, \ a_2(r) \leftarrow \frac{\pi}{2}$

2. Assign in a top-down manner angle-ranges to the vertices of T using strategy "Balanced assignment".

- 3. Draw the root r at (0,0)
- 4. Assign in a top-down manner coordinates to the vertices of T as described in Lemma "AssignPoint".

- 3. Draw the root r at (0,0)
- 4. Assign in a top-down manner coordinates to the vertices of T as described in Lemma "AssignPoint".

 $a:~\langle 0,45
angle$

 $c:~\langle 75,90
angle$

Lemma

Let T be a rooted tree and Γ be the drawing of T produced by Algorithm-1. Let u be a node of T. Then, the side of the sub-grid in Γ devoted to the drawing of the sub-tree T_u rooted at u is bounded by:

$$(|T_u| - 1)\frac{\pi}{2}\frac{1}{(a_2(u) - a_1(u))}$$

Lemma

Let T be a rooted tree and Γ be the drawing of T produced by Algorithm-1. Let u be a node of T. Then, the side of the sub-grid in Γ devoted to the drawing of the sub-tree T_u rooted at u is bounded by:

$$(|T_u| - 1)\frac{\pi}{2}\frac{1}{(a_2(u) - a_1(u))}$$

Proof

By induction on the number of nodes having at least two children.

Lemma

Let T be a rooted tree and Γ be the drawing of T produced by Algorithm-1. Let u be a node of T. Then, the side of the sub-grid in Γ devoted to the drawing of

the sub-tree T_u rooted at u is bounded by:

$$(|T_u| - 1)\frac{\pi}{2}\frac{1}{(a_2(u) - a_1(u))}$$

Proof

By induction on the number of nodes having at least two children.

Theorem

Given a rooted *n*-vertex Tree T, Algorithm-1 produces a monotone grid drawing using a grid of size at most $n \times n$.

- All work on monotone tree drawings assumes:
 - 1. Rooted tree
 - 2. Fixed embedding

- All work on monotone tree drawings assumes:
 - 1. Rooted tree
 - 2. Fixed embedding

Theorem

By carefully choosing the root of the tree and by reordering the edges around tree nodes, we can achieve monotone tree drawigns on grids of size at most $0, 89n \times 0, 89n$

- All work on monotone tree drawings assumes:
 - 1. Rooted tree
 - 2. Fixed embedding

Theorem

By carefully choosing the root of the tree and by reordering the edges around tree nodes, we can achieve monotone tree drawigns on grids of size at most $0, 89n \times 0, 89n$

- All work on monotone tree drawings assumes:
 - 1. Rooted tree
 - 2. Fixed embedding

Theorem

By carefully choosing the root of the tree and by reordering the edges around tree nodes, we can achieve monotone tree drawigns on grids of size at most $0, 89n \times 0, 89n$

- Open problems
 - 1. Drawings on smaller grids?
 - 2. Better LB on grid size?

- All work on monotone tree drawings assumes:
 - 1. Rooted tree
 - 2. Fixed embedding

Theorem

By carefully choosing the root of the tree and by reordering the edges around tree nodes, we can achieve monotone tree drawigns on grids of size at most $0, 89n \times 0, 89n$

- Open problems
 - 1. Drawings on smaller grids?
 - 2. Better LB on grid size?

Thank you!