Simple Compact Monotone Tree Drawings

Anargyros Oikonomou Antonios Symvonis

National Technical University of Athens, Greece

Monotone drawings

Monotone drawings

- A path P is monotone if there exists a line l such that the projections of the vertices of P on l appear on l in the same order as on P.

Monotone drawings

- A path P is monotone if there exists a line l such that the projections of the vertices of P on l appear on l in the same order as on P.

- A straight-line drawing Γ of a graph G is monotone if a monotone path connects every pair of vertices.

Monotone drawings of trees

Monotone drawings of trees

2010 Angelini, Colasante, Di Battista, Frati, Patrignani [GD'10, JGAA'12]
$-O\left(n^{1.6}\right) \times O\left(n^{1.6}\right)($ BFS-based $)$

- $O(n) \times O\left(n^{2}\right)$ (DFS-based)
- Ideas from number theory (Stern-Brocot trees)

Monotone drawings of trees

2010 Angelini, Colasante, Di Battista, Frati, Patrignani [GD'10, JGAA'12]
$-O\left(n^{1.6}\right) \times O\left(n^{1.6}\right)($ BFS-based $)$

- $O(n) \times O\left(n^{2}\right)$ (DFS-based)
- Ideas from number theory (Stern-Brocot trees)

2014 Kindermann, Schulz, Spoerhase, Wolff
[GD'14]
$-O\left(n^{1.5}\right) \times O\left(n^{1.5}\right)$

- Based on Farey sequence

Monotone drawings of trees

2010 Angelini, Colasante, Di Battista, Frati, Patrignani [GD'10, JGAA'12]
$-O\left(n^{1.6}\right) \times O\left(n^{1.6}\right)($ BFS-based $)$

- $O(n) \times O\left(n^{2}\right)$ (DFS-based)
- Ideas from number theory (Stern-Brocot trees)

2014 Kindermann, Schulz, Spoerhase, Wolff
[GD'14]
$-O\left(n^{1.5}\right) \times O\left(n^{1.5}\right)$

- Based on Farey sequence
$2015 \mathrm{He}, \mathrm{He}$ [cocoon]
$-O\left(n^{1.205}\right) \times O\left(n^{1.205}\right)$
- Based on Farey sequence

Monotone drawings of trees

Monotone drawings of trees

$2016 \mathrm{He}, \mathrm{He}$ [тсs]
$-O(n \log n) \times O(n \log n)$

Monotone drawings of trees

$2016 \mathrm{He}, \mathrm{He}$ [тсs]
$-O(n \log n) \times O(n \log n)$
2016 He , He [arXiv]

- $12 n \times 12 n$
- There exist trees which require at least $\frac{n}{12} \times \frac{n}{12}$

Monotone drawings of trees

$2016 \mathrm{He}, \mathrm{He}$ [тcs]
$-O(n \log n) \times O(n \log n)$
2016 He , He [arXiv]

- $12 n \times 12 n$
- There exist trees which require at least $\frac{n}{12} \times \frac{n}{12}$

2017 Oikonomou, Symvonis [GD¹7]

- $n \times n$
- Simple weighting based on size of subtrees
- Some geometry

Monotone drawings of trees

2017 Oikonomou, Symvonis [GD¹7]

Monotone drawings of trees

2017 Oikonomou, Symvonis [GD ${ }^{177}$

Complete binary (15 nodes) [12 $\times 12$] grid

Monotone drawings of trees

2017 Oikonomou, Symvonis [GD¹7]

Complete binary (15 nodes) [12 $\times 12$] grid

Complete binary + path (29 nodes)
[21 $\times 29$] grid

Monotone drawings of trees

2017 Oikonomou, Symvonis [GD¹7]

Monotone drawings of trees

2017 Oikonomou, Symvonis [GD¹7]

Complete ternary (13 nodes) $[9 \times 9]$ grid

Monotone drawings of trees

2017 Oikonomou, Symvonis [GD¹7]

Complete ternary (13 nodes)
$[9 \times 9]$ grid

Complete ternary + path (25 nodes)
$[17 \times 25]$ grid

Slope disjoint tree drawings

Slope disjoint tree drawings

- Let Γ be a drawing of a rooted tree T.
- Γ is called a slope-disjoint drawing of T if: [Angelini+]

Slope disjoint tree drawings

- Let Γ be a drawing of a rooted tree T.
- Γ is called a slope-disjoint drawing of T if: [Angelini+]

1. For every node $u \in T$, there exist angles $a_{1}(u)$ and $a_{2}(u)$, with $0<a_{1}(u)<a_{2}(u)<\pi$, s.t. for every edge e that is either in T_{u} or enters u, it holds that $a_{1}(u)<\operatorname{slope}(e)<a_{2}(u)$.

Slope disjoint tree drawings

- Let Γ be a drawing of a rooted tree T.
- Γ is called a slope-disjoint drawing of T if: [Angelini+]

1. For every node $u \in T$, there exist angles $a_{1}(u)$ and $a_{2}(u)$, with $0<a_{1}(u)<a_{2}(u)<\pi$, s.t. for every edge e that is either in T_{u} or enters u, it holds that $a_{1}(u)<\operatorname{slope}(e)<a_{2}(u)$.

Slope disjoint tree drawings

- Let Γ be a drawing of a rooted tree T.
- Γ is called a slope-disjoint drawing of T if: [Angelini+]

1. For every node $u \in T$, there exist angles $a_{1}(u)$ and $a_{2}(u)$, with $0<a_{1}(u)<a_{2}(u)<\pi$, s.t. for every edge e that is either in T_{u} or enters u, it holds that $a_{1}(u)<\operatorname{slope}(e)<a_{2}(u)$.

Slope disjoint tree drawings

2. For every two nodes $u, v \in T$ such that v is a child of u, it holds that $a_{1}(u)<a_{1}(v)<a_{2}(v)<a_{2}(u)$.

Slope disjoint tree drawings

2. For every two nodes $u, v \in T$ such that v is a child of u, it holds that $a_{1}(u)<a_{1}(v)<a_{2}(v)<a_{2}(u)$.

Slope disjoint tree drawings

2. For every two nodes $u, v \in T$ such that v is a child of u, it holds that $a_{1}(u)<a_{1}(v)<a_{2}(v)<a_{2}(u)$.

Slope disjoint tree drawings

3. For every two nodes u_{1}, u_{2} having the same parent, it holds that either

$$
\begin{aligned}
& a_{1}\left(u_{1}\right)<a_{2}\left(u_{1}\right)<a_{1}\left(u_{2}\right)<a_{2}\left(u_{2}\right) \quad \text { or } \\
& a_{1}\left(u_{2}\right)<a_{2}\left(u_{2}\right)<a_{1}\left(u_{1}\right)<a_{2}\left(u_{1}\right)
\end{aligned}
$$

Slope disjoint tree drawings

3. For every two nodes u_{1}, u_{2} having the same parent, it holds that either

$$
\begin{aligned}
& a_{1}\left(u_{1}\right)<a_{2}\left(u_{1}\right)<a_{1}\left(u_{2}\right)<a_{2}\left(u_{2}\right) \quad \text { or } \\
& a_{1}\left(u_{2}\right)<a_{2}\left(u_{2}\right)<a_{1}\left(u_{1}\right)<a_{2}\left(u_{1}\right)
\end{aligned}
$$

Slope disjoint tree drawings

3. For every two nodes u_{1}, u_{2} having the same parent, it holds that either

$$
\begin{aligned}
& a_{1}\left(u_{1}\right)<a_{2}\left(u_{1}\right)<a_{1}\left(u_{2}\right)<a_{2}\left(u_{2}\right) \\
& a_{1}\left(u_{2}\right)<a_{2}\left(u_{2}\right)<a_{1}\left(u_{1}\right)<a_{2}\left(u_{1}\right)
\end{aligned}
$$

Slope disjoint tree drawings

3. For every two nodes u_{1}, u_{2} having the same parent, it holds that either

$$
\begin{aligned}
& a_{1}\left(u_{1}\right)<a_{2}\left(u_{1}\right)<a_{1}\left(u_{2}\right)<a_{2}\left(u_{2}\right) \quad \text { or } \\
& a_{1}\left(u_{2}\right)<a_{2}\left(u_{2}\right)<a_{1}\left(u_{1}\right)<a_{2}\left(u_{1}\right)
\end{aligned}
$$

Slope disjoint tree drawings

3. For every two nodes u_{1}, u_{2} having the same parent, it holds that either
$a_{1}\left(u_{1}\right)<a_{2}\left(u_{1}\right)<a_{1}\left(u_{2}\right)<a_{2}\left(u_{2}\right) \quad$ or
$a_{1}\left(u_{2}\right)<a_{2}\left(u_{2}\right)<a_{1}\left(u_{1}\right)<a_{2}\left(u_{1}\right)$

Theorem [Angelini+] Every slope-disjoint drawing of a tree is monotone.

Non-strictly slope disjoint tree drawings

Non-strictly slope disjoint tree drawings

Def. Non-strictly slope disjoint tree drawing

Non-strictly slope disjoint tree drawings

Def. Non-strictly slope disjoint tree drawing

$$
\text { 2. } \ldots a_{1}(u) \leq a_{1}(v)<a_{2}(v) \leq a_{2}(u)
$$

Non-strictly slope disjoint tree drawings

Def. Non-strictly slope disjoint tree drawing
2. $\ldots a_{1}(u) \leq a_{1}(v)<a_{2}(v) \leq a_{2}(u)$
3. $\ldots a_{1}\left(u_{1}\right)<a_{2}\left(u_{1}\right) \leq a_{1}\left(u_{2}\right)<a_{2}\left(u_{2}\right) \quad$ or $a_{1}\left(u_{2}\right)<a_{2}\left(u_{2}\right) \leq a_{1}\left(u_{1}\right)<a_{2}\left(u_{1}\right)$

Non-strictly slope disjoint tree drawings

Def. Non-strictly slope disjoint tree drawing

1. $\ldots 0 \leq a_{1}(u)<a_{2}(u) \leq \pi \ldots a_{1}(u)<\operatorname{slope}(e)<a_{2}(u)$
2. $\ldots a_{1}(u) \leq a_{1}(v)<a_{2}(v) \leq a_{2}(u)$
3. $\ldots a_{1}\left(u_{1}\right)<a_{2}\left(u_{1}\right) \leq a_{1}\left(u_{2}\right)<a_{2}\left(u_{2}\right) \quad$ or $a_{1}\left(u_{2}\right)<a_{2}\left(u_{2}\right) \leq a_{1}\left(u_{1}\right)<a_{2}\left(u_{1}\right)$

Non-strictly slope disjoint tree drawings

Def. Non-strictly slope disjoint tree drawing

1. $\ldots 0 \leq a_{1}(u)<a_{2}(u) \leq \pi \ldots a_{1}(u)<\operatorname{slope}(e)<a_{2}(u)$
2. $\ldots a_{1}(u) \leq a_{1}(v)<a_{2}(v) \leq a_{2}(u)$
3. $\ldots a_{1}\left(u_{1}\right)<a_{2}\left(u_{1}\right) \leq a_{1}\left(u_{2}\right)<a_{2}\left(u_{2}\right) \quad$ or $a_{1}\left(u_{2}\right)<a_{2}\left(u_{2}\right) \leq a_{1}\left(u_{1}\right)<a_{2}\left(u_{1}\right)$

Theorem Every non-strictly slope disjoint drawing of a tree is monotone.

Locating points on the grid

Locating points on the grid

Lemma. Consider two angles θ_{1}, θ_{2} with $0 \leq \theta_{1}<\theta_{2} \leq \frac{\pi}{4}$ and let $d=\left\lceil\frac{1}{\theta_{2}-\theta_{1}}\right\rceil$. Then, edge e connecting the origin $(0,0)$ to point $p=\left(d,\left\lfloor\tan \left(\theta_{1}\right) \cdot d+1\right\rfloor\right)$ satisfies $\theta_{1}<\operatorname{slope}(e)<\theta_{2}$.

Locating points on the grid

Lemma-AssignPoint

Consider angles θ_{1}, θ_{2} with $0 \leq \theta_{1}<\theta_{2} \leq \frac{\pi}{2}$ and let $d=\left\lceil\frac{1}{\theta_{2}-\theta_{1}}\right\rceil$. Then, a grid point p such that the edge e that connects the origin $(0,0)$ to p satisfies $\theta_{1}<\operatorname{slope}(e)<\theta_{2}$ can be identified as follows:

Locating points on the grid

Lemma-AssignPoint

Consider angles θ_{1}, θ_{2} with $0 \leq \theta_{1}<\theta_{2} \leq \frac{\pi}{2}$ and let $d=\left\lceil\frac{1}{\theta_{2}-\theta_{1}}\right\rceil$. Then, a grid point p such that the edge e that connects the origin $(0,0)$ to p satisfies $\theta_{1}<\operatorname{slope}(e)<\theta_{2}$ can be identified as follows:

Locating points on the grid

Lemma-AssignPoint

Consider angles θ_{1}, θ_{2} with $0 \leq \theta_{1}<\theta_{2} \leq \frac{\pi}{2}$ and let $d=\left\lceil\frac{1}{\theta_{2}-\theta_{1}}\right\rceil$. Then, a grid point p such that the edge e that connects the origin $(0,0)$ to p satisfies $\theta_{1}<\operatorname{slope}(e)<\theta_{2}$ can be identified as follows:

Locating points on the grid

Lemma-AssignPoint

Consider angles θ_{1}, θ_{2} with $0 \leq \theta_{1}<\theta_{2} \leq \frac{\pi}{2}$ and let $d=\left\lceil\frac{1}{\theta_{2}-\theta_{1}}\right\rceil$. Then, a grid point p such that the edge e that connects the origin $(0,0)$ to p satisfies $\theta_{1}<\operatorname{slope}(e)<\theta_{2}$ can be identified as follows:

- $\theta_{2}-\theta_{1}>\frac{\pi}{4}: \quad p=(1,1)$

Locating points on the grid

Lemma-AssignPoint

Consider angles θ_{1}, θ_{2} with $0 \leq \theta_{1}<\theta_{2} \leq \frac{\pi}{2}$ and let $d=\left\lceil\frac{1}{\theta_{2}-\theta_{1}}\right\rceil$. Then, a grid point p such that the edge e that connects the origin $(0,0)$ to p satisfies $\theta_{1}<\operatorname{slope}(e)<\theta_{2}$ can be identified as follows:

Locating points on the grid

Lemma-AssignPoint

Consider angles θ_{1}, θ_{2} with $0 \leq \theta_{1}<\theta_{2} \leq \frac{\pi}{2}$ and let $d=\left\lceil\frac{1}{\theta_{2}-\theta_{1}}\right\rceil$. Then, a grid point p such that the edge e that connects the origin $(0,0)$ to p satisfies $\theta_{1}<\operatorname{slope}(e)<\theta_{2}$ can be identified as follows:

- $\frac{\pi}{4} \geq \theta_{2}-\theta_{1}>\arctan \left(\frac{1}{2}\right)$:

$$
\begin{cases}p=(1,2) & \text { if } \theta_{1} \geq \frac{\pi}{4} \\ p=(1,1) & \text { if } \frac{\pi}{4}>\theta_{1} \geq \arctan \left(\frac{1}{2}\right) \\ p=(2,1) & \text { if } \arctan \left(\frac{1}{2}\right)>\theta_{1}\end{cases}
$$

Locating points on the grid

Lemma-AssignPoint

Consider angles θ_{1}, θ_{2} with $0 \leq \theta_{1}<\theta_{2} \leq \frac{\pi}{2}$ and let $d=\left\lceil\frac{1}{\theta_{2}-\theta_{1}}\right\rceil$. Then, a grid point p such that the edge e that connects the origin $(0,0)$ to p satisfies $\theta_{1}<\operatorname{slope}(e)<\theta_{2}$ can be identified as follows:

- $\frac{\pi}{4} \geq \theta_{2}-\theta_{1}>\arctan \left(\frac{1}{2}\right)$:

$$
\begin{cases}p=(1,2) & \text { if } \theta_{1} \geq \frac{\pi}{4} \\ p=(1,1) & \text { if } \frac{\pi}{4}>\theta_{1} \geq \arctan \left(\frac{1}{2}\right) \\ p=(2,1) & \text { if } \arctan \left(\frac{1}{2}\right)>\theta_{1}\end{cases}
$$

Locating points on the grid

Lemma-AssignPoint

Consider angles θ_{1}, θ_{2} with $0 \leq \theta_{1}<\theta_{2} \leq \frac{\pi}{2}$ and let $d=\left\lceil\frac{1}{\theta_{2}-\theta_{1}}\right\rceil$. Then, a grid point p such that the edge e that connects the origin $(0,0)$ to p satisfies $\theta_{1}<\operatorname{slope}(e)<\theta_{2}$ can be identified as follows:

- $\frac{\pi}{4} \geq \theta_{2}-\theta_{1}>\arctan \left(\frac{1}{2}\right)$:

$$
\begin{cases}p=(1,2) & \text { if } \theta_{1} \geq \frac{\pi}{4} \\ p=(1,1) & \text { if } \frac{\pi}{4}>\theta_{1} \geq \arctan \left(\frac{1}{2}\right) \\ p=(2,1) & \text { if } \arctan \left(\frac{1}{2}\right)>\theta_{1}\end{cases}
$$

Locating points on the grid

Lemma-AssignPoint

Consider angles θ_{1}, θ_{2} with $0 \leq \theta_{1}<\theta_{2} \leq \frac{\pi}{2}$ and let $d=\left\lceil\frac{1}{\theta_{2}-\theta_{1}}\right\rceil$. Then, a grid point p such that the edge e that connects the origin $(0,0)$ to p satisfies $\theta_{1}<\operatorname{slope}(e)<\theta_{2}$ can be identified as follows:

Locating points on the grid

Lemma-AssignPoint

Consider angles θ_{1}, θ_{2} with $0 \leq \theta_{1}<\theta_{2} \leq \frac{\pi}{2}$ and let $d=\left\lceil\frac{1}{\theta_{2}-\theta_{1}}\right\rceil$. Then, a grid point p such that the edge e that connects the origin $(0,0)$ to p satisfies $\theta_{1}<\operatorname{slope}(e)<\theta_{2}$ can be identified as follows:

- $\arctan \left(\frac{1}{2}\right) \geq \theta_{2}-\theta_{1}$:

$$
\begin{cases}p=\left(d,\left\lfloor\tan \left(\theta_{1}\right) \cdot d+1\right\rfloor\right) & \text { if } \frac{\pi}{4} \geq \theta_{2}>\theta_{1} \geq 0 \\ p=(1,1) & \text { if } \theta_{2}>\frac{\pi}{4}>\theta_{1} \\ p=\left(\left\lfloor\tan \left(\frac{\pi}{2}-\theta_{2}\right) \cdot d+1\right\rfloor, d\right) & \text { if } \theta_{2}>\theta_{1} \geq \frac{\pi}{4}\end{cases}
$$

Locating points on the grid

Lemma-AssignPoint

Consider angles θ_{1}, θ_{2} with $0 \leq \theta_{1}<\theta_{2} \leq \frac{\pi}{2}$ and let $d=\left\lceil\frac{1}{\theta_{2}-\theta_{1}}\right\rceil$. Then, a grid point p such that the edge e that connects the origin $(0,0)$ to p satisfies $\theta_{1}<\operatorname{slope}(e)<\theta_{2}$ can be identified as follows:

- $\arctan \left(\frac{1}{2}\right) \geq \theta_{2}-\theta_{1}$:

$$
\begin{cases}p=\left(d,\left\lfloor\tan \left(\theta_{1}\right) \cdot d+1\right\rfloor\right) & \text { if } \frac{\pi}{4} \geq \theta_{2}>\theta_{1} \geq 0 \\ p=(1,1) & \text { if } \theta_{2}>\frac{\pi}{4}>\theta_{1} \\ p=\left(\left\lfloor\tan \left(\frac{\pi}{2}-\theta_{2}\right) \cdot d+1\right\rfloor, d\right) & \text { if } \theta_{2}>\theta_{1} \geq \frac{\pi}{4}\end{cases}
$$

Locating points on the grid

Lemma-AssignPoint

Consider angles θ_{1}, θ_{2} with $0 \leq \theta_{1}<\theta_{2} \leq \frac{\pi}{2}$ and let $d=\left\lceil\frac{1}{\theta_{2}-\theta_{1}}\right\rceil$. Then, a grid point p such that the edge e that connects the origin $(0,0)$ to p satisfies $\theta_{1}<\operatorname{slope}(e)<\theta_{2}$ can be identified as follows:

- $\arctan \left(\frac{1}{2}\right) \geq \theta_{2}-\theta_{1}$:

$$
\begin{cases}p=\left(d,\left\lfloor\tan \left(\theta_{1}\right) \cdot d+1\right\rfloor\right) & \text { if } \frac{\pi}{4} \geq \theta_{2}>\theta_{1} \geq 0 \\ p=(1,1) & \text { if } \theta_{2}>\frac{\pi}{4}>\theta_{1} \\ p=\left(\left\lfloor\tan \left(\frac{\pi}{2}-\theta_{2}\right) \cdot d+1\right\rfloor, d\right) & \text { if } \theta_{2}>\theta_{1} \geq \frac{\pi}{4}\end{cases}
$$

Locating points on the grid

Lemma-AssignPoint

Consider angles θ_{1}, θ_{2} with $0 \leq \theta_{1}<\theta_{2} \leq \frac{\pi}{2}$ and let $d=\left\lceil\frac{1}{\theta_{2}-\theta_{1}}\right\rceil$. Then, a grid point p such that the edge e that connects the origin $(0,0)$ to p satisfies $\theta_{1}<\operatorname{slope}(e)<\theta_{2}$ can be identified as follows:

Locating points on the grid

Lemma-AssignPoint

Consider angles θ_{1}, θ_{2} with $0 \leq \theta_{1}<\theta_{2} \leq \frac{\pi}{2}$ and let $d=\left\lceil\frac{1}{\theta_{2}-\theta_{1}}\right\rceil$. Then, a grid point p such that the edge e that connects the origin $(0,0)$ to p satisfies $\theta_{1}<\operatorname{slope}(e)<\theta_{2}$ can be identified as follows:

- If $p=(x, y)$ is the identified point, it also holds that:

$$
\max (x, y) \leq \frac{\pi}{2} \cdot \frac{1}{\theta_{2}-\theta_{1}}
$$

Balanced angle-range assignment for tree nodes

Balanced angle-range assignment for tree nodes

- Strategy: Balanced assignment
- Spil the angle range of a node u to its childen in proportion to the size of the subtree rooted at each child.

Balanced angle-range assignment for tree nodes

- Strategy: Balanced assignment
- Spil the angle range of a node u to its childen in proportion to the size of the subtree rooted at each child.
- Size of angle range of child $u_{i}:\left(a_{2}(u)-a_{1}(u)\right) \frac{\left|T_{u_{i}}\right|}{\left|T_{u}\right|-1}$

Balanced angle-range assignment for tree nodes

- Strategy: Balanced assignment
- Spil the angle range of a node u to its childen in proportion to the size of the subtree rooted at each child.
- Size of angle range of child $u_{i}:\left(a_{2}(u)-a_{1}(u)\right) \frac{\left|T_{u_{i}}\right|}{\left|T_{u}\right|-1}$

Lemma

"Balanced assignment" leads to a non-strictly slope disjoint drawing.

The tree drawing algorithm

The tree drawing algorithm

Algorithm-1 Balanced Monotone Tree Drawing Input: An n-vertex tree T rooted at vertex r.
Output: A monotone drawing of T on a grid of size at most $n \times n$.

The tree drawing algorithm

Algorithm-1 Balanced Monotone Tree Drawing Input: An n-vertex tree T rooted at vertex r.
 Output: A monotone drawing of T on a grid of size at most $n \times n$.

1. $a_{1}(r) \leftarrow 0, a_{2}(r) \leftarrow \frac{\pi}{2}$
2. Assign in a top-down
manner angle-ranges to
the vertices of T using
strategy "Balanced
assignment".

The tree drawing algorithm

Algorithm-1 Balanced Monotone Tree Drawing
Input: An n-vertex tree T rooted at vertex r.
Output: A monotone drawing of T on a grid of size at most $n \times n$.

1. $a_{1}(r) \leftarrow 0, a_{2}(r) \leftarrow \frac{\pi}{2}$
2. Assign in a top-down manner angle-ranges to the vertices of T using strategy "Balanced
 assignment".

The tree drawing algorithm

The tree drawing algorithm

The tree drawing algorithm

3. Draw the root r at $(0,0)$
4. Assign in a top-down manner coordinates to the vertices of T as described in Lemma "AssignPoint".

The tree drawing algorithm

3. Draw the root r at $(0,0)$
4. Assign in a top-down manner coordinates to the vertices of T as described in Lemma "AssignPoint".

The tree drawing algorithm

The tree drawing algorithm

$$
a:\langle 0,45\rangle
$$

The tree drawing algorithm

$a:\langle 0,45\rangle$
$\frac{\pi}{4} \geq \theta_{2}-\theta_{1}>\arctan \left(\frac{1}{2}\right):$
$\begin{cases}p=(1,2) & \text { if } \theta_{1} \geq \frac{\pi}{4} \\ p=(1,1) & \text { if } \frac{\pi}{4}>\theta_{1} \geq \arctan \left(\frac{1}{2}\right) \\ p=(2,1) & \text { if } \arctan \left(\frac{1}{2}\right)>\theta_{1}\end{cases}$

The tree drawing algorithm

$$
a:\langle 0,45\rangle
$$

$$
\frac{\pi}{4} \geq \theta_{2}-\theta_{1}>\arctan \left(\frac{1}{2}\right):
$$

$$
\begin{cases}p=(1,2) & \text { if } \theta_{1} \geq \frac{\pi}{4} \\ p=(1,1) & \text { if } \frac{\pi}{4}>\theta_{1} \geq \arctan \left(\frac{1}{2}\right) \\ p=(2,1) & \text { if } \arctan \left(\frac{1}{2}\right)>\theta_{1}\end{cases}
$$

The tree drawing algorithm

The tree drawing algorithm

$$
b:\langle 45,75\rangle \quad f:\langle 45,75\rangle
$$

The tree drawing algorithm

The tree drawing algorithm

$$
b:\langle 45,75\rangle \quad f:\langle 45,75\rangle
$$

$$
\frac{\pi}{4} \geq \theta_{2}-\theta_{1}>\arctan \left(\frac{1}{2}\right):
$$

$$
\begin{cases}p=(1,2) & \text { if } \theta_{1} \geq \frac{\pi}{4} \\ p=(1,1) & \text { if } \frac{\pi}{4}>\theta_{1} \geq \arctan \left(\frac{1}{2}\right) \\ p=(2,1) & \text { if } \arctan \left(\frac{1}{2}\right)>\theta_{1}\end{cases}
$$

The tree drawing algorithm

The tree drawing algorithm

$c:\langle 75,90\rangle$

The tree drawing algorithm

The tree drawing algorithm

The tree drawing algorithm

$$
\begin{aligned}
& c:\langle 75,90\rangle \\
& \arctan \left(\frac{1}{2}\right) \geq \theta_{2}-\theta_{1}: \\
& \left\{\begin{array}{ll}
p=\left(d,\left\lfloor\tan \left(\theta_{1}\right) \cdot d+1\right\rfloor\right) & \text { if } \frac{\pi}{4} \geq \theta_{2}>\theta_{1} \geq 0 \\
p=(1,1) & \text { if } \theta_{2}>\frac{\pi}{4}>\theta_{1} \\
p=\left(\left\lfloor\tan \left(\frac{\pi}{2}-\theta_{2}\right) \cdot d+1\right\rfloor, d\right) & \text { if } \theta_{2}>\theta_{1} \geq \frac{\pi}{4}
\end{array},\langle 0,45\rangle\right.
\end{aligned}
$$

The tree drawing algorithm

$$
\begin{aligned}
& c:\langle 75,90\rangle \\
& \arctan \left(\frac{1}{2}\right) \geq \theta_{2}-\theta_{1}: \\
& \begin{cases}p=\left(d,\left\lfloor\tan \left(\theta_{1}\right) \cdot d+1\right\rfloor\right) & \text { if } \frac{\pi}{4} \geq \theta_{2}>\theta_{1} \geq 0 \\
p=(1,1) & \text { if } \theta_{2}>\frac{\pi}{4}>\theta_{1} \\
p=\left(\left\lfloor\tan \left(\frac{\pi}{2}-\theta_{2}\right) \cdot d+1\right\rfloor, d\right) & \text { if } \theta_{2}>\theta_{1} \geq \frac{\pi}{4} d\end{cases}
\end{aligned}
$$

The tree drawing algorithm

$$
\begin{aligned}
& c:\langle 75,90\rangle \\
& \arctan \left(\frac{1}{2}\right) \geq \theta_{2}-\theta_{1}: \\
& \begin{cases}p=\left(d,\left\lfloor\tan \left(\theta_{1}\right) \cdot d+1\right\rfloor\right) & \text { if } \frac{\pi}{4} \geq \theta_{2}>\theta_{1} \geq 0 \\
p=(1,1) & \text { if } \theta_{2}>\frac{\pi}{4}>\theta_{1} \\
p=\left(\left\lfloor\tan \left(\frac{\pi}{2}-\theta_{2}\right) \cdot d+1\right\rfloor, d\right) & \text { if } \theta_{2}>\theta_{1} \geq \frac{\pi}{4}\end{cases}
\end{aligned}
$$

The tree drawing algorithm

The tree drawing algorithm

The tree drawing algorithm

The tree drawing algorithm

The tree drawing algorithm

Lemma

Let T be a rooted tree and Γ be the drawing of T produced by Algorithm-1. Let u be a node of T.
Then, the side of the sub-grid in Γ devoted to the drawing of the sub-tree T_{u} rooted at u is bounded by:

$$
\left(\left|T_{u}\right|-1\right) \frac{\pi}{2} \frac{1}{\left(a_{2}(u)-a_{1}(u)\right)}
$$

The tree drawing algorithm

Lemma

Let T be a rooted tree and Γ be the drawing of T produced by Algorithm-1. Let u be a node of T.
Then, the side of the sub-grid in Γ devoted to the drawing of the sub-tree T_{u} rooted at u is bounded by:

$$
\left(\left|T_{u}\right|-1\right) \frac{\pi}{2} \frac{1}{\left(a_{2}(u)-a_{1}(u)\right)}
$$

Proof

By induction on the number of nodes having at least two children.

The tree drawing algorithm

Lemma

Let T be a rooted tree and Γ be the drawing of T produced by Algorithm-1. Let u be a node of T.
Then, the side of the sub-grid in Γ devoted to the drawing of the sub-tree T_{u} rooted at u is bounded by:

$$
\left(\left|T_{u}\right|-1\right) \frac{\pi}{2} \frac{1}{\left(a_{2}(u)-a_{1}(u)\right)}
$$

Proof
By induction on the number of nodes having at least two children.

Theorem

Given a rooted n-vertex Tree T, Algorithm- 1 produces a monotone grid drawing using a grid of size at most $n \times n$.

On-going work

On-going work

- All work on monotone tree drawings assumes: 1. Rooted tree

2. Fixed embedding

On-going work

- All work on monotone tree drawings assumes:

1. Rooted tree
2. Fixed embedding

Theorem

By carefully choosing the root of the tree and by reordering the edges around tree nodes, we can achieve monotone tree drawigns on grids of size at most $0,89 n \times 0,89 n$

On-going work

- All work on monotone tree drawings assumes:

1. Rooted tree
2. Fixed embedding

Theorem

By carefully choosing the root of the tree and by reordering the edges around tree nodes, we can achieve monotone tree drawigns on grids of size at most $0,89 n \times 0,89 n$

On-going work

- All work on monotone tree drawings assumes:

1. Rooted tree
2. Fixed embedding

Theorem

By carefully choosing the root of the tree and by reordering the edges around tree nodes, we can achieve monotone tree drawigns on grids of size at most $0,89 n \times 0,89 n$

- Open problems

1. Drawings on smaller grids?
2. Better LB on grid size?

On-going work

- All work on monotone tree drawings assumes:

1. Rooted tree
2. Fixed embedding

Theorem

By carefully choosing the root of the tree and by reordering the edges around tree nodes, we can achieve monotone tree drawigns on grids of size at most $0,89 n \times 0,89 n$

- Open problems

1. Drawings on smaller grids?
2. Better LB on grid size?

Thank you!

