Drawing Dynamic Graphs Without Timeslices

Paolo Simonetto¹, Daniel Archambault¹, and Stephen Kobourov²

¹Swansea University ²University of Arizona

September 27th, 2017

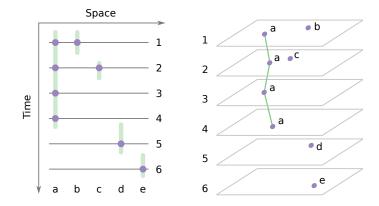
Computational Foundry Ffowndri **Gyfrifiadol**

• • • • • • • • • • • • •

- Introduction and Motivation
- 2 Related Work
- Ontinuous Dynamic Graph Model
- OynNoSlice Algorithm
- Metric Evaluation
- Onclusion and Future Work

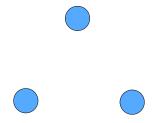
A (10) A (10)

Continuous Dynamic Graphs in the World

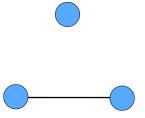

Nodes and edges have real time values associated with them

- streaming social media services (Twitter, Facebook, Weibo, ...)
- social network data
- experimental data
- Current methods transform them into discrete dynamic graphs by creating timeslices
- Dynamic graphs can also be naturally expressed using timeslices
 - standard timeslicing techniques work here

< 回 > < 回 > < 回 > -

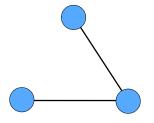

Discrete Dynamic Graph Drawing

Discretised time


- Timeslices selected or given in data
- Intertimeslice edge between same node in adjacent timeslices
- Linear interpolation between each timeslice
- Problem: How many timeslices to select?

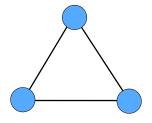
Suppose in our data there is the following temporal pattern

- Timeslices are perfectly aligned with each event
 - In visualisation, we may not know a more complicated pattern exists
 - Computation of all possible patterns infeasible


Suppose in our data there is the following temporal pattern

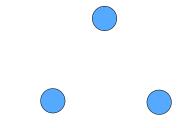
- Timeslices are perfectly aligned with each event
 - In visualisation, we may not know a more complicated pattern exists
 - Computation of all possible patterns infeasible

・ ロ ト ・ 同 ト ・ 目 ト ・ 目 ト

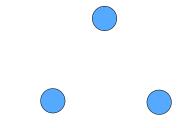

Suppose in our data there is the following temporal pattern

- Timeslices are perfectly aligned with each event
 - In visualisation, we may not know a more complicated pattern exists
 - Computation of all possible patterns infeasible

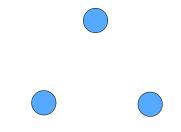
A (B) > A (B) > A (B)


Suppose in our data there is the following temporal pattern

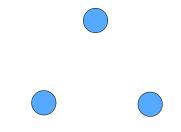
- Timeslices are perfectly aligned with each event
 - In visualisation, we may not know a more complicated pattern exists
 - Computation of all possible patterns infeasible


A (10) + A (10) +

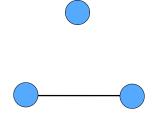
- If we oversample, we waste computational time
- We waste screenspace in small multiples and time in animation


It's like watching your data in extreme slow motion

- If we oversample, we waste computational time
- We waste screenspace in small multiples and time in animation

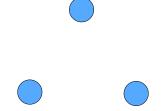

It's like watching your data in extreme slow motion

- If we oversample, we waste computational time
- We waste screenspace in small multiples and time in animation


- It's like watching your data in extreme slow motion
 - Okay... any time now...

- If we oversample, we waste computational time
- We waste screenspace in small multiples and time in animation

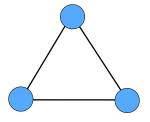
- It's like watching your data in extreme slow motion
 - Okay... any time now...


- If we oversample, we waste computational time
- We waste screenspace in small multiples and time in animation

• It's like watching your data in extreme slow motion

- Okay... any time now...
- Yay! Now wait for the second edge...

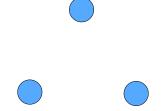
• If we undersample, we lose temporal features



Features are lost as we aggregate the time dimension

we cannot tell the difference between the two

A I > A I > A


• If we undersample, we lose temporal features

• Features are lost as we aggregate the time dimension

we cannot tell the difference between the two

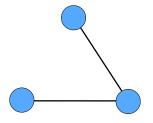
• If we undersample, we lose temporal features

Features are lost as we aggregate the time dimension

we cannot tell the difference between the two

A I > A I > A

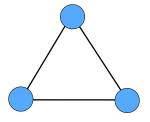
• If we undersample, we lose temporal features



• Features are lost as we aggregate the time dimension

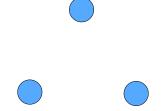
we cannot tell the difference between the two

A 1


• If we undersample, we lose temporal features

• Features are lost as we aggregate the time dimension

we cannot tell the difference between the two


• If we undersample, we lose temporal features

• Features are lost as we aggregate the time dimension

we cannot tell the difference between the two

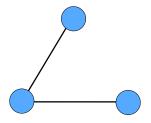
• If we undersample, we lose temporal features

Features are lost as we aggregate the time dimension

we cannot tell the difference between the two

A I > A I > A

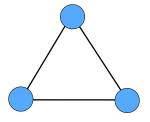
• If we undersample, we lose temporal features



• Features are lost as we aggregate the time dimension

we cannot tell the difference between the two

A 1


• If we undersample, we lose temporal features

• Features are lost as we aggregate the time dimension

we cannot tell the difference between the two

• If we undersample, we lose temporal features

• Features are lost as we aggregate the time dimension

we cannot tell the difference between the two

• Both low and high frequency features can exist in a data set

- Not much happens in the graph for several hours
- Drastic changes over the course of 5 minutes
- There is no single, regular timeslicing for this data
- Imposing regular timeslices forces instability in drawing
 - linear interpolations forced between adjacent timeslices
 - non-interacting nodes forced to have extra linear transitions
- Selecting a new set of timeslices means redrawing the network
 - one continuous drawing can be timesliced at any rate

A (10) A (10)

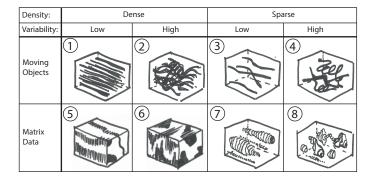
Drawing Graphs Without Timeslices

- We propose a method to draw continuous dynamic graphs without timeslices:
 - A model for continuous dynamic graphs and their attributes
 - An algorithm that implements this model and draws continuous dynamic graphs in the space-time cube
 - A metric evaluation to demonstrate benefits of the approach

く 同 ト く ヨ ト く ヨ ト -

Related Work: Dynamic Graph Drawing

- Dynamic graph drawing approaches a mature area (Beck *et al.* 2017)
- Many approaches exist for online and offline drawing
 - supergraph, anchoring, and linking strategies are typical (Brandes and Mader 2012)
- Notion of timeslice often considered part of definition

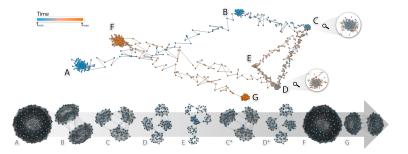

A dynamic graph is defined as a sequence: $\Gamma = (G_1, G_2, ..., G_n)$ where $G_i = (V_i, E_i)$ are static graphs and indices refer to a sequence of time steps $\tau = (t_1, t_2, ..., t_n)$.

F. Beck, M. Burch, S. Diehl, and D. Weiskopf. A Taxonomy and Survey of Dynamic Graph Visualization. Computer Graphics Forum, 36(1): 133–159, 2017.

• Our work does not assume a sequence of timeslices but a continuous time dimension

イロト 不得 トイヨト イヨト

Related Work: Space-Time Cube



B. Bach, P. Dragicevic, D. Archambault, C. Hurter and S. Carpendale. A Descriptive Framework for Temporal Data Visualizations Based on Generalized Space-Time Cubes. Computer Graphics Forum, 36(6):36–61, 2017.

- Related work uses the space-time cube to model visualisations
- Approaches do not describe how to draw continuous dynamic graphs in the space time cube

Related Work: Time as Space

Some approaches use one or two dimensions for time

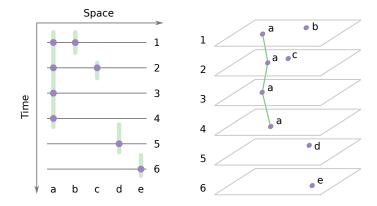
S. van den Elzen, D. Holten, J. Blaas and J. J. van Wijk, Reducing Snapshots to Points: A Visual Analytics Approach to Dynamic Network Exploration, in IEEE Transactions on Visualization and Computer Graphics, 22(1):1–10, 2016.

- Very scalable long time series
- Still, they are based on timeslicing

Related Work: 3D Graph Drawing

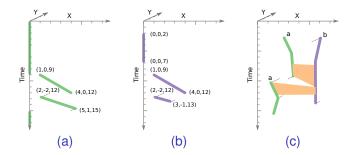
M. Cordeil, T. Dwyer, K. Klein, B. Laha, K. Marriott and B. H. Thomas, Immersive Collaborative Analysis of Network Connectivity: CAVE-style or Head-Mounted Display?, in IEEE Transactions on Visualization and Computer Graphics, vol. 23, no. 1, pp. 441-450, 2017.

- A number of algorithms draw graphs in 3D
 - have more "space" to draw the network
 - problems with occlusion and interaction
- Our approach 2D + time but is inspired by 3D approaches


Model to formally describe continuous dynamic graphs

- nodes and edges
- attributes and how encoded
- Algorithm to draw in 3D (2D + t) using this model (DynNoSlice)
 - force system comprising 5 forces
 - constraints, 3 of them, to ensure valid drawing
 - trajectory complexity adjustment

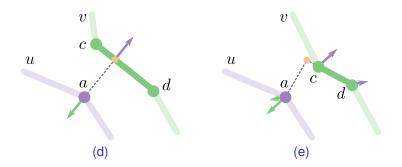
< ロ > < 同 > < 回 > < 回 > < 回 >


Discrete Dynamic Graph Model

Discretised time

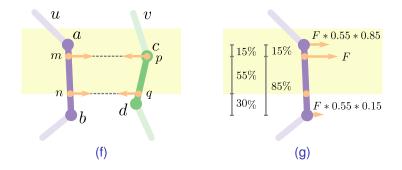
- Timeslices selected and nodes/edges projected onto nearest
- Static graph drawing on each timeslice
- Intertimeslice edges make stable drawings (mental map)

Continuous Dynamic Graph Model


• A continuous dynamic graph in the 3D space-time cube:

- nodes are polyline trajectories with bends
- edges are ruled surfaces between two polyline trajectories
- attributes are assigned to both over intervals
- Positions are 3D coordinates (*x*, *y*, *t*)
- Nodes, edge, attributes all defined over intervals of time

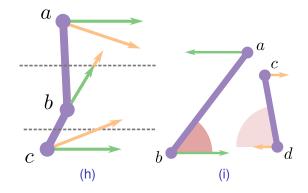
- Algorithm designed to embed polyline trajectories inside the space-time cube
- Output is 2D + time embedding of the nodes which are polylines
- For each iteration of the algorithm:
 - Compute and sum the forces based on the force system.
 - Move nodes based on these forces and the constraints.
 - Adjust trajectory complexity in the space-time cube.


A (B) < (

Node Repulsion

- Node trajectories u and v repel in 3D
 - fixed time points move in x and y
 - bends in trajectory can move up and down
- Spread trajectories in space and prevents crowding

Edge Attraction



• Surface pulls two trajectories u and v together

- area edge occupies in time dimension
- allocate force to node via linear interpolation

A b

Gravity, Trajectory Straightening, and Stability

- Three forces to keep drawing properties
 - gravity pulls trajectories to centre of (x, y) drawing
 - create smooth trajectories using curve shortening flow
 - stable drawings (mental map) to encourage vertical segments
 - * force applied even when appearance is false

- Constraints needed to ensure a valid drawing
 - Decreasing Max Movement. large movements at start and small movements at end
 - 2 Movement Acceleration. oscillations discouraged between iterations
 - Time Correctness. appearance/disappearance times must remain the same

< 回 > < 回 > < 回 > .

Node Trajectory Complexity Adjustment

- Nodes are polylines in the space time cube
- We want to adjust trajectory complexity as needed
 - no interaction, remove bends to make straight
 - Iots of interaction, insert bends for a more complicated trajectory
 - bends are inserted locally
 - inserted bends can change their time coordinate
- Adapt polyline complexity by inserting and removing bends
 - segment length is above a threshold, a bend is inserted
 - segment length is below a threshold, a bend is removed
- Inserting bend is like inserting a personalised timeslice for a particular node that needs it

Metric evaluation comparing DynNoSlice to Visone

- test both discrete and continuous data sets
- on timeslice stress and off timeslice stress
- node movement
- crowding events
- running time

• Further details in the paper on procedure and data sets

< 回 > < 回 > < 回 >

Video

- Temporal resolution improves time features
- Network features made clear without sampling

Daniel Archambault

Discrete Dynamic Graph Data Sets

Graph	Туре	Time (s)	Scale	StressOn (d)	StressOff (d)	Movement	Crowding
VanDeBunt	v	0.13	1.00	1.14	1.46	3.80	0
	d	7.73	0.62	1.20	1.20	3.91	0
	С	6.73	0.68	1.19	1.29	3.69	0
Newcomb	v	0.11	1.00	14.04	14.77	16.36	8
	d	9.68	0.68	16.61	16.59	13.48	2
	С	7.62	0.75	18.13	17.98	12.37	0
InfoVis	v	77.43	0.47	51.66	52.98	2.15	36
	d	388.38	0.56	31.09	31.04	2.03	8
	с	381.15	0.56	32.70	34.02	1.91	6

- Visone is better for on timeslice stress
- Movement and crowding are comparable
- Some improvements off timeslice

Continuous Dynamic Graph Data Sets

Graph	Туре	Time (s)	Scale	StressOn (c)	StressOff (c)	Movement	Crowding
Rugby	v	0.08	0.68	3.08	2.71	25.47	6
	d	7.40	0.68	1.84	1.71	16.23	1
	С	3.88	0.51	1.84	1.77	6.57	0
Pride	v	3.39	0.18	0.62	0.88	5.44	682
	d	1655.50	0.32	0.82	0.86	6.95	13
	с	75.61	0.24	0.83	0.85	1.12	3

- DynNoSlice has lower off-timeslice stress
- Lower movement and crowding
 - adaptive trajectory complexity allows all three

4 **A** N A **B** N A **B** N

- First dynamic graph drawing algorithms that does not use timeslices
 - Nodes modelled as polylines and edges as surfaces
 - Implemented the first algorithms to embed in space-time cube
- Comparison with timeslicing algorithms
- Animation is natural but not effective. New visualisation methods needed.
- Nyquist frequency and can we sample better?