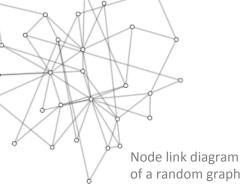
Anisotropic Radial Layout for Visualizing Centrality and Structure in Graphs Mukund Raj and Ross T. Whitaker

25th International Symposium on Graph Drawing and Network Visualization Boston, September 2017

Node-link Diagram

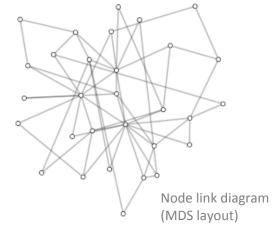
- Goals
 - Improve aesthetics
 - Reduce visual clutter



- Convey features of interest
 - Structural features based on internode distances
 - Importance of nodes

Visualizing Structure

- Preserve internode distances in the drawing
- Method:
 - Dimensionality reduction techniques
 - Multidimensional Scaling (MDS)
 - t-SNE (stochastic neighbor embedding)



Multidimensional Scaling (MDS)

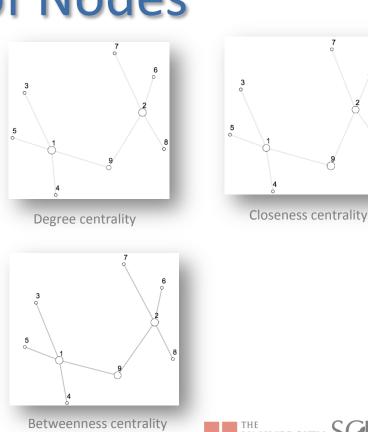
- Conveys similarity between objects
- Minimizes energy function (stress)

$$\sigma(X) = \sum_{u,v} w_{uv} (d_{uv} - ||\bar{x}_u - \bar{x}_v||_2)^2$$

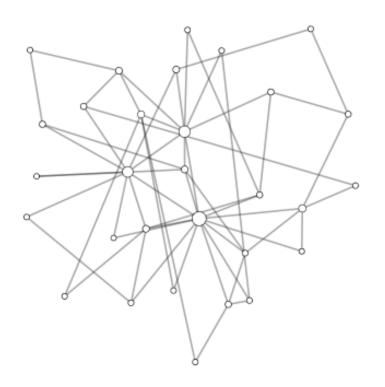
 $X \in \mathbb{R}^{n \times 2}$ $d_{uv} := \text{ideal distance between nodes } u \text{ and } v$ $w_{uv} := \text{weight on edge between } u \text{ and } v$ $\bar{x}_u \in \mathbb{R}^2 := \text{position of } x$

Importance of Nodes

- Using graph structure
 - Node centrality
 - *Degree centrality:* number of neighbors
 - *Closeness centrality:* reciprocal of sum of distances
 - **Betweenness centrality**: number of shortest paths passing through the node
 - Many more ...



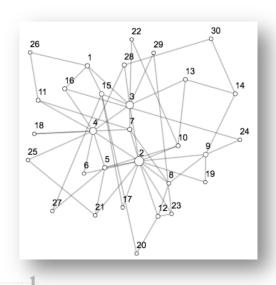
Visualizing Centrality

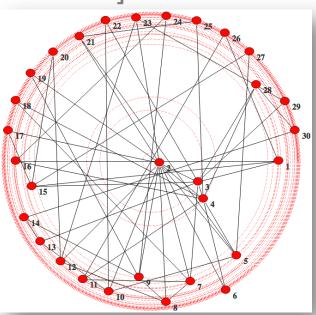


- Node size encodes centrality
- Conflict between position and size channels

Visualizing Centrality

• Radial layout [Yee 2001]



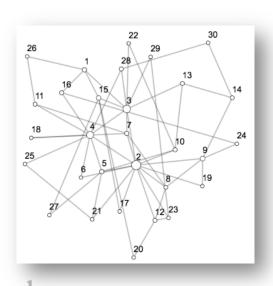


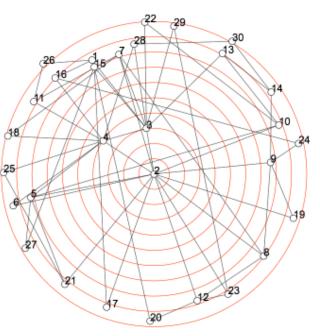
* Figure generated using SocNetV.

Distance from center encodes betweenness centrality.

Visualizing Centrality and Structure

(Approximate) Distance preserving radial layout [Brandes 2009, Baingana 2014]

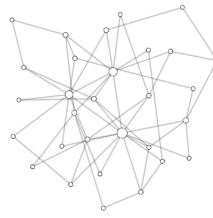




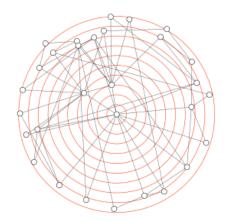
Minimize: $\underbrace{\sigma(X)}_{\text{MDS objective}}$

Objectives

- Convey centrality
- Avoid conflicting perceptual cues
- Reduce structural (distance) distortion



MDS layout preserves structure

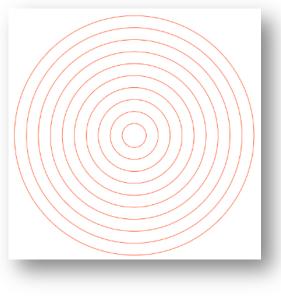


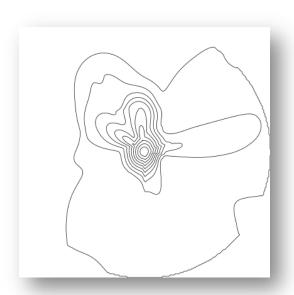
Radial layout highlights node centrality

Highlight centrality and minimize distance distortion

Anisotropic Radial Layouts

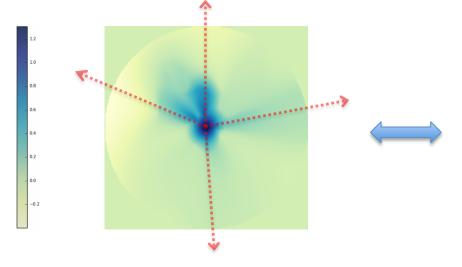
- Relax circular constraint
- Use star shaped curves

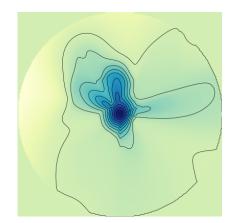




Radial Monotonicity

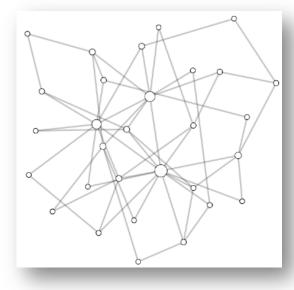
- Strictly decreasing along all center outward directions
- Guarantees star shaped contours





Step1: Initialization

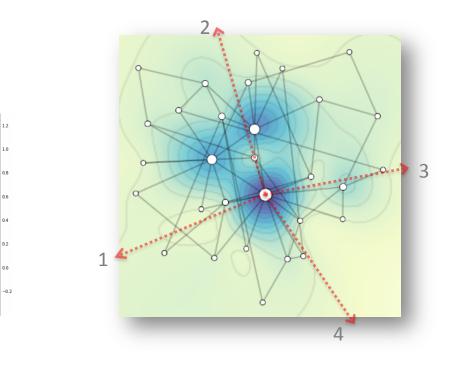
• Initialize positions using MDS.



Node sizes encode centrality.

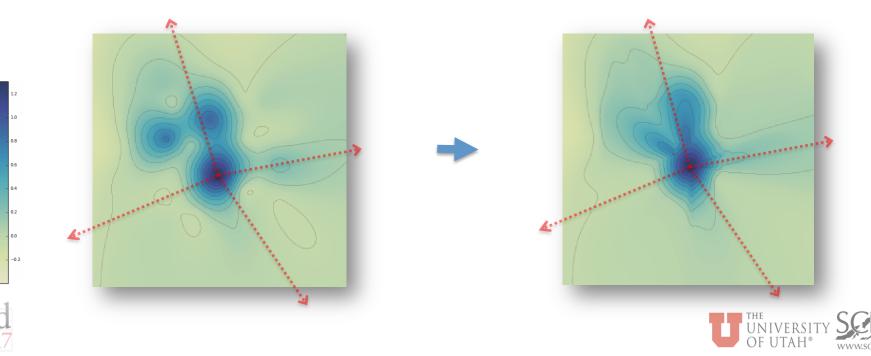
Step2: Interpolation

• Smooth interpolation of the centrality (e.g. using thin plate spline)



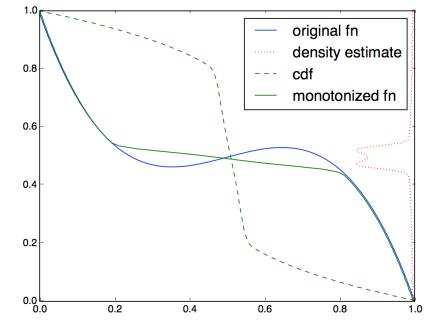
Step 3: Monotonization

• Monotonizing along radial axis



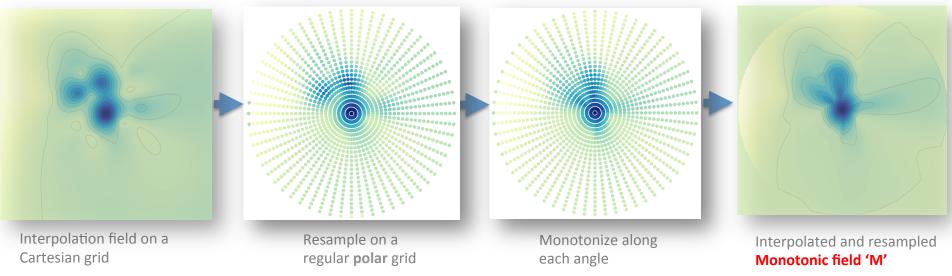
Step3: Monotonization

- Monotonizing a 1D function [Dette et al 2006]
- Steps
 - 1. Construct density estimate
 - 2. Compute cdf
 - 3. Invert cdf
- Output: smooth monotonic approximation



Step3: Monotonization

• Radially monotonizing a 2D field



• If input field is smooth, independent 1D monotonization results in a smooth 2D field [Dette et al 2006]

Step 4: Optimization objective

- Combine MDS with centrality
- Add penalty for deviation of node centrality from associated field value

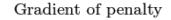
$$\gamma(X) = \underbrace{\sigma(X)}_{\text{MDS stress}} + w_{\rho} \underbrace{\left(M_{X,\bar{c}}(X) - \bar{c}\right)}_{\text{Penalty}}$$

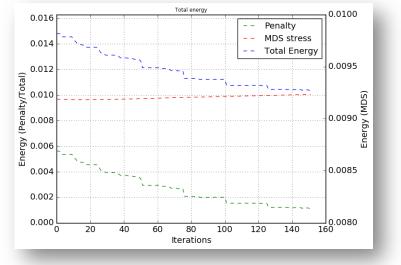
$$X \in \mathbb{R}^{n \times 2}$$
 $\bar{c} \in \mathbb{R}^n$ $M_{X,\bar{c}}(\cdot) :=$ Monotonic field

Step 5: Optimization

Using gradient descent

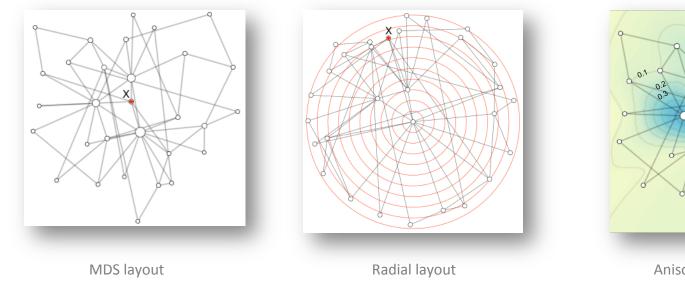
$$\nabla \gamma (X) = \nabla \sigma(X) + w_{\rho} \times 2 (M_{X,\bar{c}}(X) - \bar{c}) \odot \nabla M_{X,\bar{c}}(X)$$

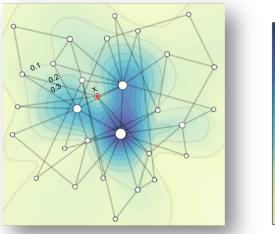




 $X \in \mathbb{R}^{n \times 2}$ $\bar{c} \in \mathbb{R}^{n}$ $M_{X,\bar{c}}(\cdot) := \text{Monotonic field}$

• Random graph generated using the Barabasi-Albert model.





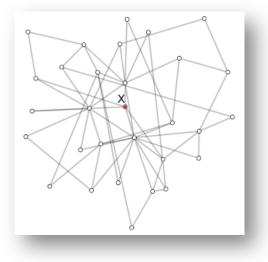
Anisotropic radial layout

1.2

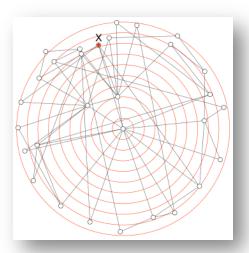
0.8

0.6 0.4 0.2 0.0

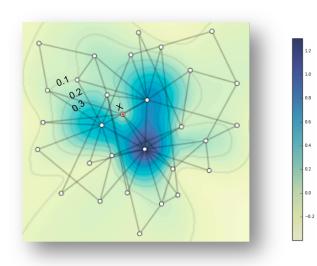
• Random graph generated using the Barabasi-Albert model.



MDS layout

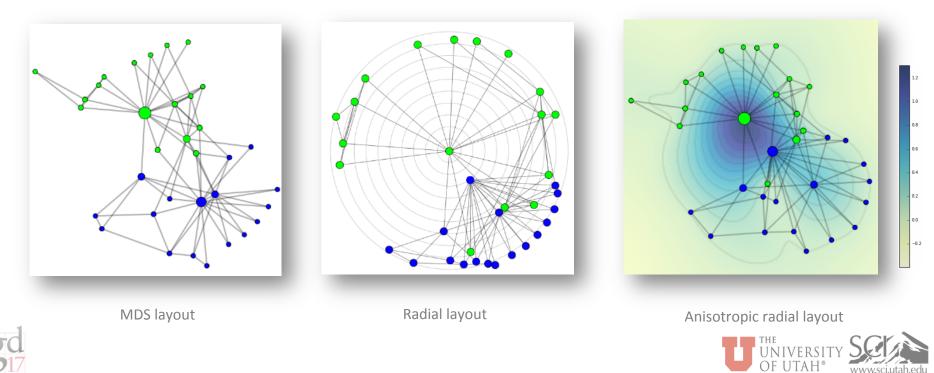


Radial layout

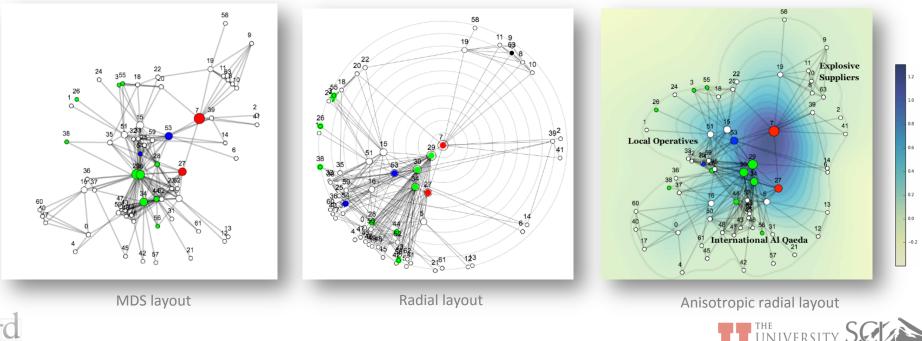


Anisotropic radial layout

• Zachary's karate club network [Zachary 1977]

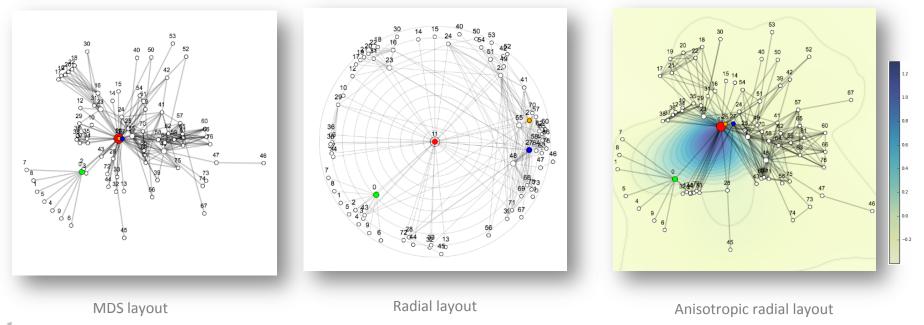


• Terrorist network from the Madrid train bombing incident in 2004 [Rodriguez 2005]



www.sci.utah.edu

• Les Miserables character associations



THE UNIVERS

www.sci.utah.edu

Conclusions

- Strategy for preserving centrality and structure
- Layout Algorithm
- Suitable for real world networks
- Future work
 - Automatic parameter estimation
 - Better optimization method
 - Experiment with large graph (higher node count)

Thanks

• This work was supported by National Science Foundation (NSF) grant IIS-1212806.

