

MLSEB: Edge Bundling using Moving Least Squares Approximation

Jieting Wu, Jianping Zeng, Feiyu Zhu, Hongfeng Yu

Department of Computer Science & Engineering

University of Nebraska-Lincoln, Lincoln, Nebraska

Outline

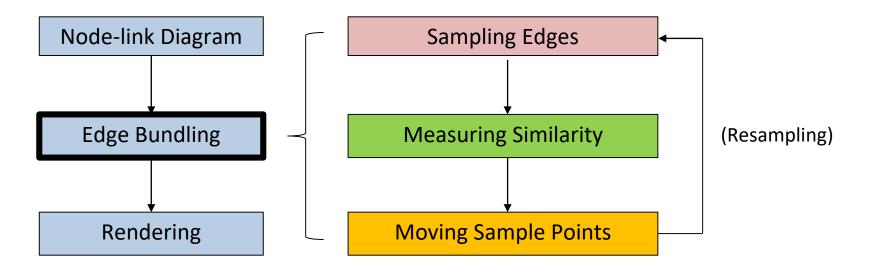
- Motivation
- Background
- Approach
- Results
- Conclusion

Motivation

- State-of-the-art graph visualization
 - Node-Link diagram
 - Pro
 - Simple and intuitive
 - Con
 - Easily incur visual clutter
 - Edge bundling
 - Pros
 - Effectively remedy visual clutter
 - Reveal high-level graph structures
 - Cons
 - High complexity
 - Non-trivial quality evaluation

FFTEB [Lhuillier2017]

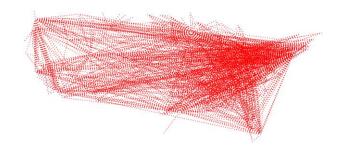
- Edge bundling algorithms
 - Visually merge edges based on similarity measurements
 - Iterative refinement



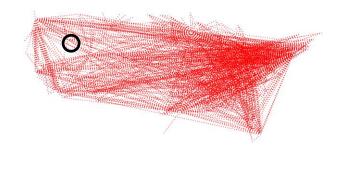
- Force-directed edge bundling [Holten2010]
- Kernel density estimation (KDE) based methods
 - KDEEB: Graph Bundling by Kernel Density Estimation [Hurter2012]
 - CUBu: CUDA Universal Bundling [Matthew van der Zwan2016]
 - FFTEB: Fast Fourier Transform Edge Bundling [Lhuillier2017]

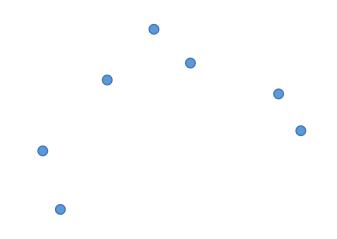
• Kernel density estimation (KDE) based methods

- Kernel density estimation (KDE) based methods
 - Image-based sampling

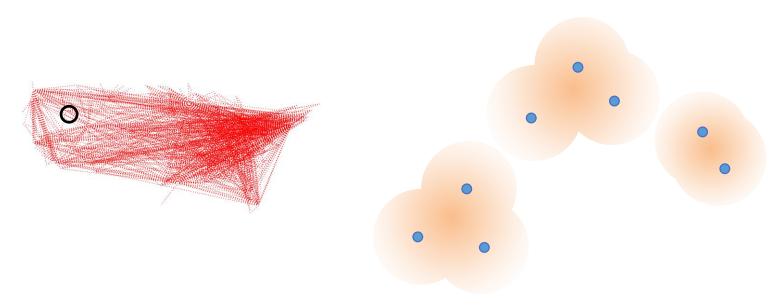


- Kernel density estimation (KDE) based methods
 - Mean-shift clustering

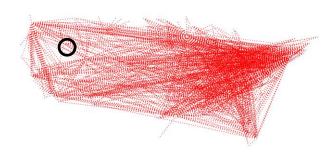




- Kernel density estimation (KDE) based methods
 - Mean-shift clustering
 - Kernel density estimation



- Kernel density estimation (KDE) based methods
 - Mean-shift clustering
 - Kernel density estimation
 - Gradient-based advection



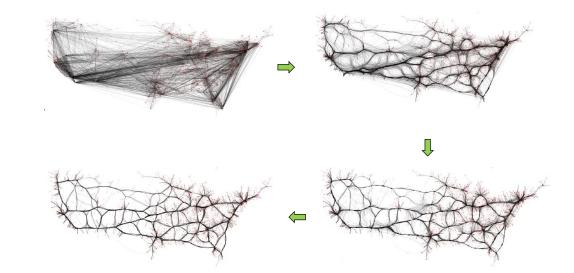
- Kernel density estimation (KDE) based methods
 - Incur excessive convergence artifact
 - Require resampling to avoid excessive convergence

Background (Complexity)

- Kernel density estimation (KDE) based methods
 - Image-based sampling
 - Mean-shift clustering
 - Iterative refinement (resampling)

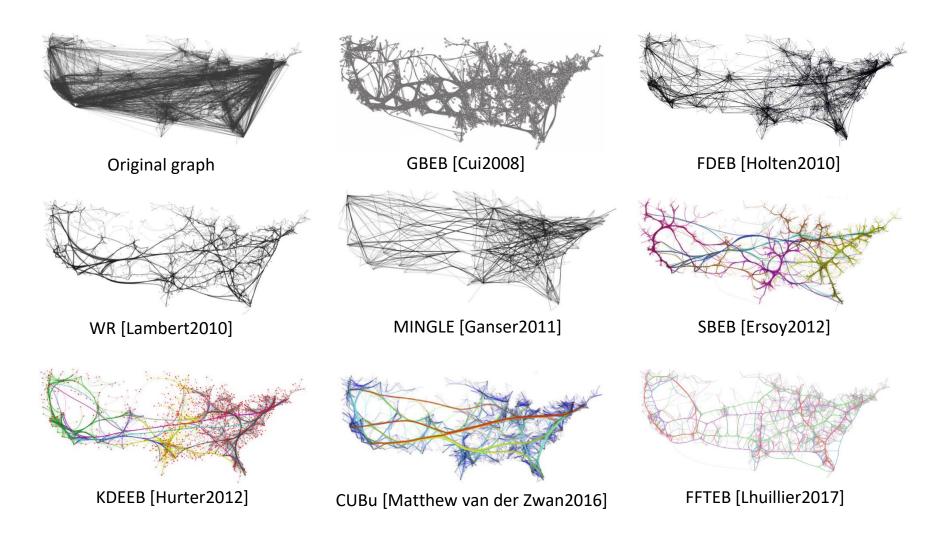
Complexity: O(SNI + IE)

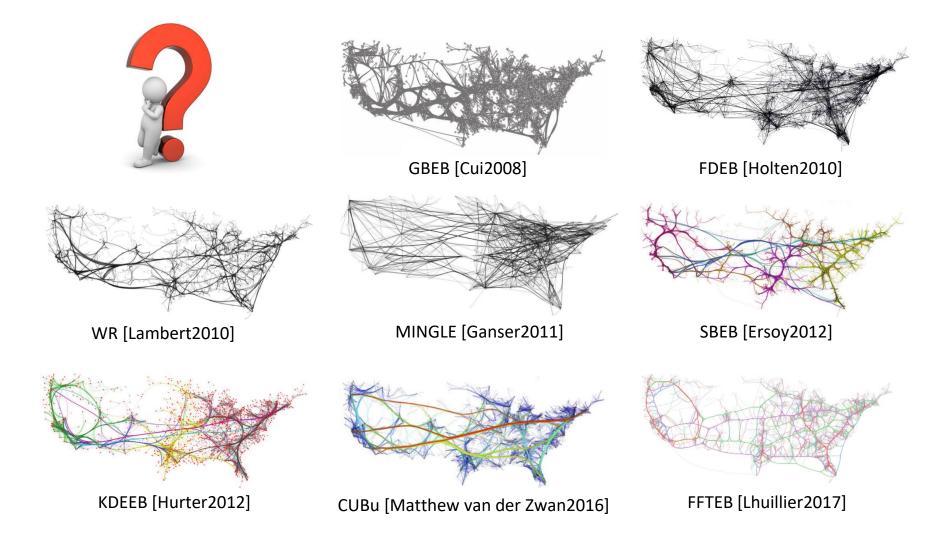
S: sample points N: image pixel number I: iteration number E: edge number



Graph Bundling by Kernel Density Estimation [Hurter2012]

Examples of Existing Edge Bundling Methods





- Quality of edge bundling
 - Lhuillier et al. [Lhuillier2017] suggested to use the ratio of clutter reduction to amount of distortion to quantify the quality of a bundled graph

$$Q = \frac{C}{T}$$

- *C*: clutter reduction
- *T*: amount of distortion

- Quality of edge bundling
 - *T*: The distortion is measured by computing the distance between original edge drawings and the bundled edge drawings
 - *C*: The calculation of clutter reduction has not been fully concluded in the existing work

- Quality of edge bundling
 - We propose to employ the reduction of the used pixel number in a graph drawing to measure *C*

$$C = \Delta P = P - P'$$

- We also propose to use the average distortion \overline{T} , instead of the total distortion of all the sample points

$$\overline{T} = \frac{T}{S}$$

T is the total distortion generated *S* is the number of sample points

- Quality of edge bundling
 - We have a quality metric to quantify the quality of edge bundling

$$Q = \frac{\Delta P}{\bar{T}}$$

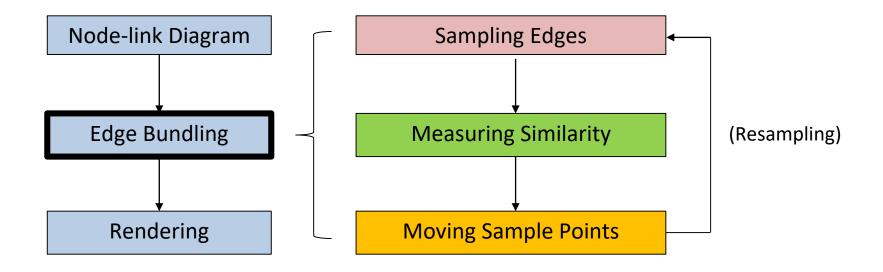
- ΔP : reduced pixels 1
- \overline{T} : average distortion \downarrow

- Quality of edge bundling
 - The pros and cons of the existing methods
 - Pros
 - Create visually appealing edge bundles that reduce clutter
 - Cons
 - Resampling is required in iterative refinement
 - Does not take distortion into their methods

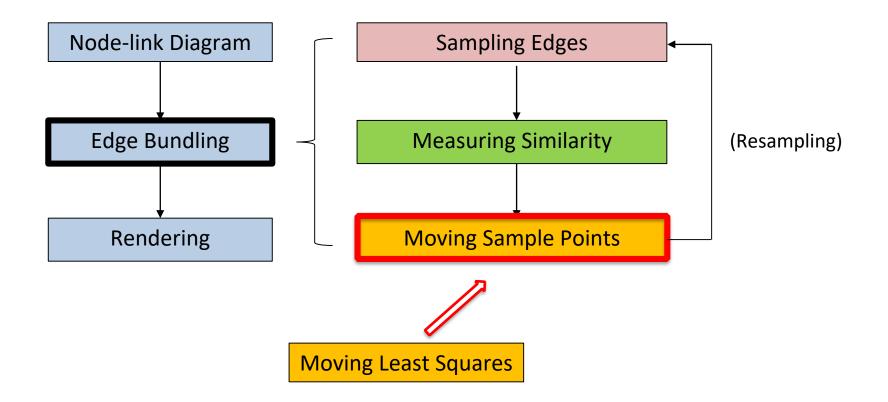
Contribution

- We present MLSEB, a novel method to generate edge bundles based on moving least squares (MLS) approximation
 - Introduce MLS into edge bundling
 - Simplify the edge bundling pipeline
 - Generate **better quality** results compared to other methods
 - Based on the aforementioned quality metric
 - Ensure scalability and efficiency
 - A set of graphs that range from ten thousand to a half million edges
 - A GPU implementation

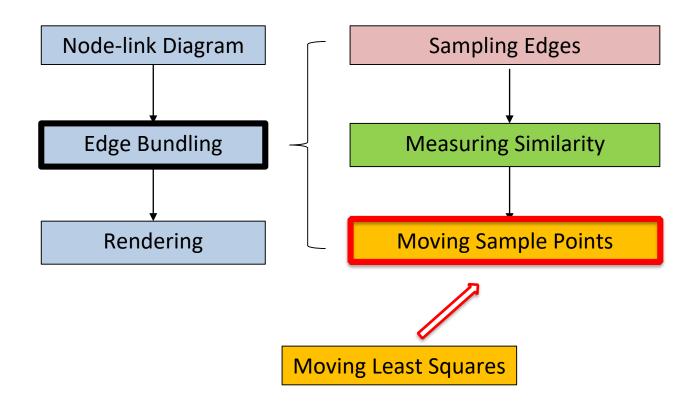
• The pipeline of moving least squares edge bundling



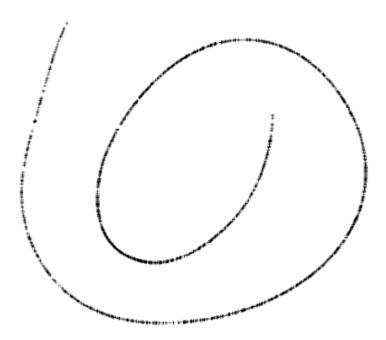
• The pipeline of moving least squares edge bundling



• The pipeline of moving least squares edge bundling

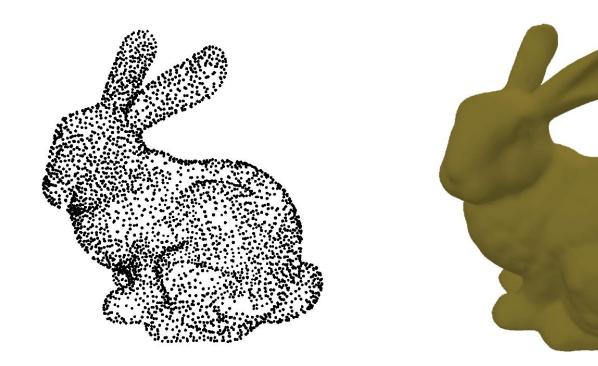


- Moving least squares application
 - Reconstructing continuous functions from a set of unorganized point samples
 - 2D curve reconstruction



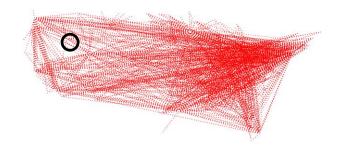
Curve Reconstruction from Unorganized Points [Lee00]

- Moving least squares application
 - Reconstructing continuous functions from a set of unorganized point samples
 - 3D surface reconstruction



Moving Least Squares Multiresolution Surface Approximation [Mederos03]

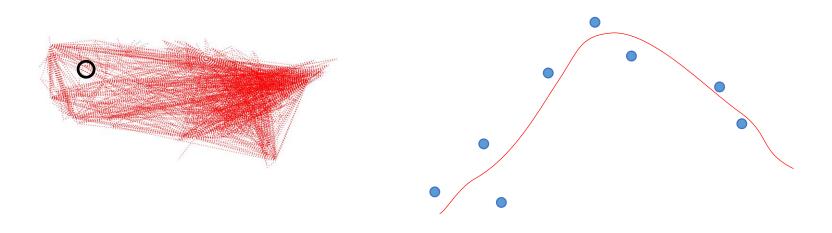
- MLSEB
 - Image-based sampling





• MLSEB

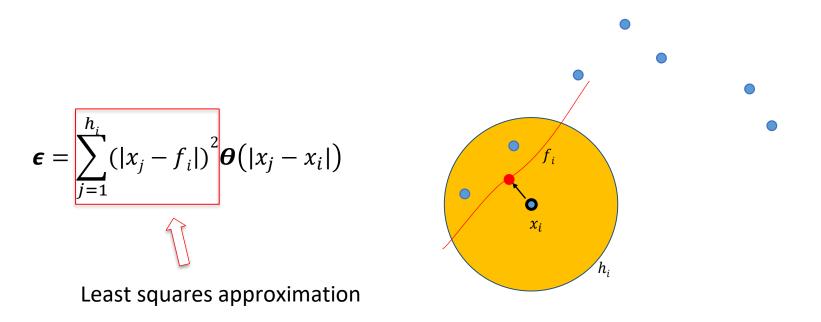
- Assume there is an implicit skeleton that is a suitable place to gather sample points and form bundles
 - Skeleton can be interpreted as a curve



• MLSEB

– Skeleton can be interpreted as a piece-wise polynomial curve

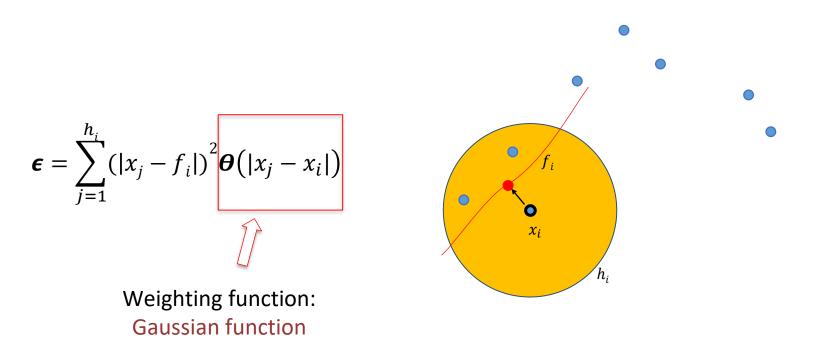
- Calculate f_i by minimizing a weighted least squares error ϵ
 - Within a radial neighborhood h_i of x_i



• MLSEB

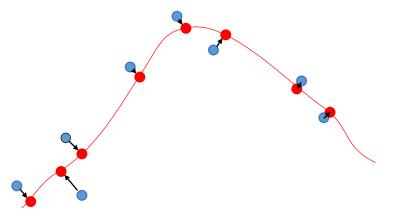
– Skeleton can be interpreted as a piece-wise polynomial curve

- Calculate f_i by minimizing a weighted least squares error $\boldsymbol{\epsilon}$
 - Within a radial neighborhood h_i of x_i

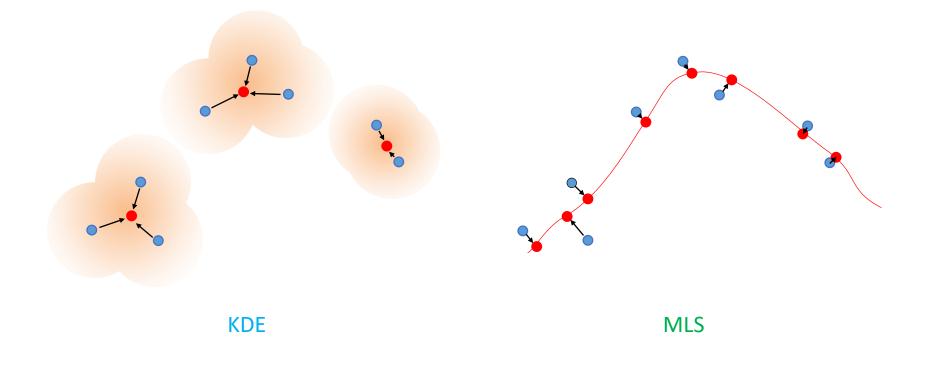


- MLSEB
 - Skeleton can be interpreted as a piece-wise polynomial curve
 - Calculate f_i by minimizing a weighted least squares error $\boldsymbol{\epsilon}$
 - Within a radial neighborhood h_i of x_i
 - Project x_i into f_i

$$\boldsymbol{\epsilon} = \sum_{i=1}^{h_i} (|x_j - f_i|)^2 \boldsymbol{\theta} (|x_j - x_i|)$$



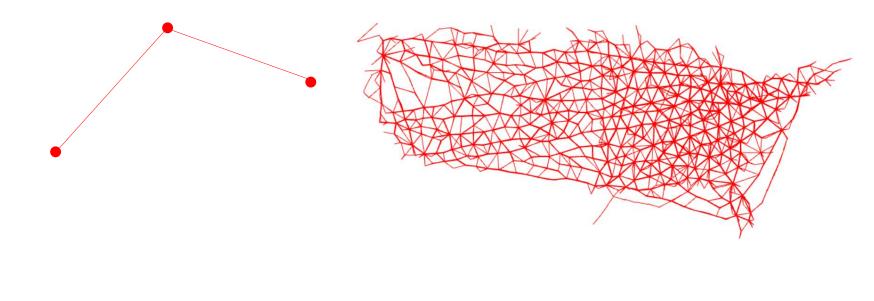
• MLS vs. KDE



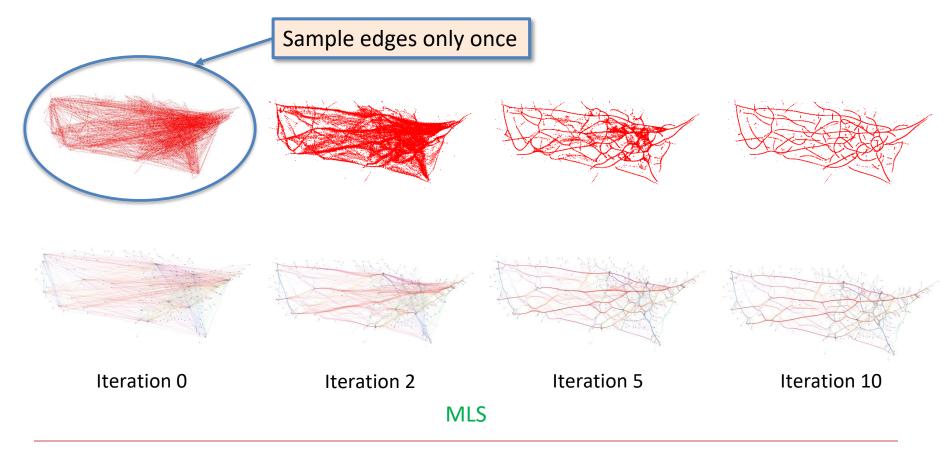
• MLS vs. KDE

KDE-based methods incur excessive convergence

• Resampling is required to generate better bundling results

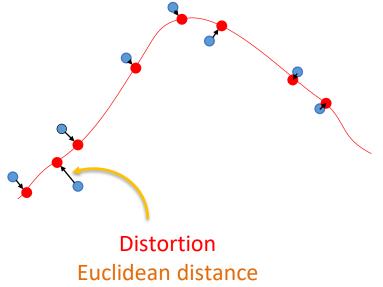


- MLS vs. KDE
 - MLS method only samples edges in the initial step, and it doesn't incur excessive convergence in the following iterations



- Moving least squares edge bundling
 - Project a sample point x_i into its local regression curve f_i
 - f_i is locally approximated
 - Within a radial neighborhood of x_i
 - The distortion of x_i is locally minimized

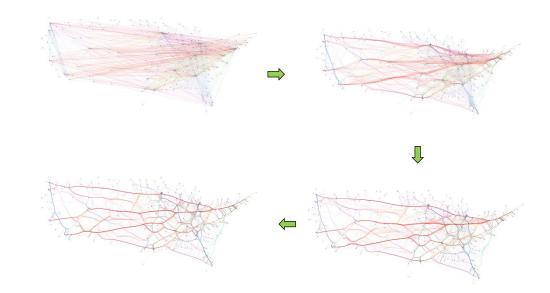
$$\boldsymbol{\epsilon} = \sum_{i=1}^{h_i} (|x_j - f_i|)^2 \boldsymbol{\theta} (|x_j - x_i|)$$



- Moving least squares edge bundling
 - Image-based sampling (sample edges in the initial step)
 - Moving least squares approximation and projection
 - Iterative refinement

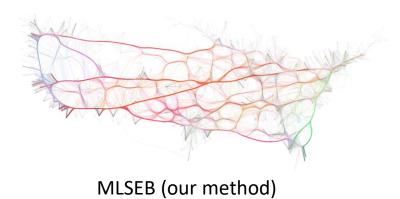
Complexity: O(SNI + E)

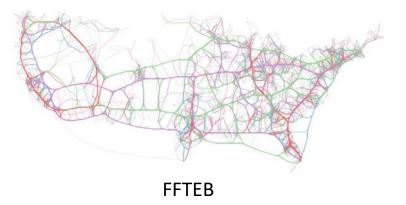
S: sample pointsN: image pixel numberI: iteration numberE: edge number



Results

• Dataset 1: a small US migrations graph (9780 edges)

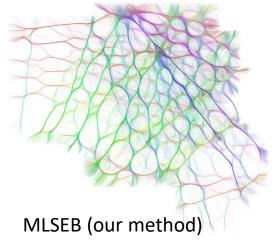


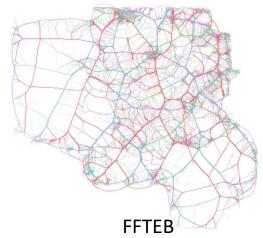


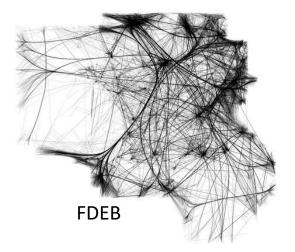
		Samples	Time (ms) / iteration	Iterations	Quality
	FDEB	3785K	80	300	8.9
	FFTEB	489K	48	262	7.60
FDEB	MLSEB	207K	38	10	9.20

Results

• Dataset 2: a France airlines graph (17274 edges)



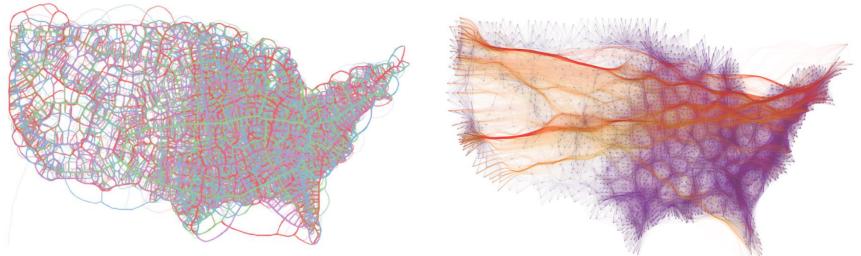




	Samples	Time (ms) / iteration	Iterations	Quality
FDEB	6685K	110	300	3.7
FFTEB	864K	70	244	21.3
MLSEB	990K	94	10	26.0

Results

• Dataset 3: a large US migrations graph (545881 edges)



MLSEB (our method)

	Samples	Time (ms) / iteration	Iterations	Quality
FFTEB	6.4M	123	390	13.28
MLSEB	5.8M	554	20	13.30

Conclusion

- Moving Least Squares Edge Bundling (MLSEB)
 - A simple and efficient method for constructing edge bundles of large graphs using MLS projection
 - Only sample edges once, and avoid resampling in the following iterations
 - Achieve better visualization results based on a quality metric
 - Ensure scalability and efficiency

Acknowledgement

• This research has been sponsored by the National Science Foundation through grants IIS-1652846, IIS-1423487, and ICER-1541043.

Thank You!

