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Problem

FM-bigraph: G = (V
f
, V

m
, E) bipartite graph

V
f 

fixed vertices (predefined locations)

V
m

mobile vertices (can be freely placed) 

K-bend FM-bigraph problem: Does G admit a planar k-bend 

drawing, i.e., a crossing-free drawing with at most k bends 

per edge (k ≥0)?

bend number of G: The minimum k for which G admits a 

planar k-bend drawing



Motivation

Perugia

Assisi

Terni

Orvieto

Spoleto

Gubbio

Ethnic Restaurants 

in Umbria

• Fixed vertices = geographic locations

• Mobile vertices = simple attributes

• Attributes are connected to their 

locations
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Related work: Point Labeling

FM-bigraphs

Point 
Labeling

Many-to-one 

boundary labeling

Lin, PacificVis 2010

Bekos et al., JGAA 2015



Related work: Partial Drawing

FM-bigraphs

Partial 
Drawing

• NP-hard in the general case

Patrignani, IJFCS 2006

Extending a partial drawing to 

a planar straight-line drawing

• Tractable for restricted cases

e.g., prescribed outer face, 

convex drawings



Related work: Point-set Embedding

FM-bigraphs

Point-set 
Embedding

Each vertex is mapped to a 

specific point or to a finite set 

of points

Consequence: Any planar FM-

bigraph has a planar O(n)-bend 

drawing

Every planar graph has a planar 

embedding at fixed vertex 

locations (O(n) bends per edge)

• Pach and Wenger, Graphs and 

Comb. 2001

• Badent et al., TCS 2008



Related work: Constrained Drawings

FM-bigraphs

Constrained 
Drawings of 

Bigraphs
Anchored Maps 

K. Misue, IEICE Trans. 2008

Drawing planar partitions

(vertices on predefined lines or plane regions)

• Biedl, SoCG 1998

• Biedl, Kaufmann, Mutzel, WG 1998



Contribution

• Result 1. Computing the bend number of an FM-bigraph is NP-hard 

(connection with point-set embedding)

• Result 2. When mobile vertices lie in the convex hull (CH) of their 

neighbors, testing the existence of 0-bend drawings: (i) is in NP; (ii) 

is in P (tractable) if the intersection graph of the CHs is a cactus

• Result 3. A practical model for 1-bend drawings of FM-bigraphs, 

inspired by the boundary labeling approach, with polynomial-time 

algorithms



Result 1 – NP-hardness

Theorem. The 0-bend FM-bigraph problem is NP-hard, even if each 

vertex has degree at most two

Proof: Reduction from 1-bend point-set embedding with mapping 

(which is NP-hard – Goaoc et al., DCG 2009)



Result 1 – More in general

Theorem. The k-bend FM-bigraph problem is at least hard as the 

(2k+1)-bend point-set embedding with mapping

Proof: Same reduction

2k+1 bends k bends

k bends



Result 1 – Special case

Theorem. If all fixed vertices are collinear, the 0-bend FM-bigraph

problem is linear-time solvable 

Proof: Reduce to planarity testing

1 2 3



Result 2 – Convex-hull restriction

CH restriction for 0-bend drawings: fixed vertices in general position 

and every mobile vertex in the CH of its (fixed) neighbors

Good placement Bad placement



Result 2 – Line arrangement

O(|V
f
|

2
) lines



Result 2 – Line arrangement

cell

O(|V
f
|

4
) cells



Result 2 – Line arrangement



Result 2 – Line arrangement



Result 2 – Discretization

Lemma. Let  and ' be two 0-bend drawings of G that differ only for 

the position of a (mobile) vertex. If this vertex is in the same cell in 

the two drawings, then ' is planar   is planar

 '



Result 2 – Membership in NP

Theorem. The 0-bend FM-bigraph problem belongs to NP if each 

mobile vertex is restricted to lie in the convex hull of its neighbors

Proof. A non-deterministic algorithm guesses an assignment of the 

|V
m
| mobile vertices to the O(|V

f
|

4
) cells; for each assignment, the 

algorithm (deterministically) checks planarity in O(|V
f
|

2
) time.



Result 2 – From NP to P

P



Result 2 – Support graphs – G
X

G
X

= intersection graph of all CHs

• CH(u)  the CH of the neighbors of u

CHs G
X



Result 2 – Support graphs – G
C

G
C

= clustered graph 

• cluster C(u)  CH(u) (for each mobile vertex u)

• nodes of C(u)  cells in CH(u)

• edge (a,b)  aC(u), bC(v), CH(u) CH(v)  , and placing u in a 

and v in b does not cause crossings 

C(u)

C(v)

u

v

a

b



Result 2 – Support graphs – G
C

G
C

= clustered graph 

• cluster C(u)  CH(u) (for each mobile vertex u)

• nodes of C(u)  cells in CH(u)

• edge (a,b)  aC(u), bC(v), CH(u) CH(v)  , and placing u in a 

and v in b does not cause crossings 

C(u)

C(v)

u

v

a

b

nodes = O(|V
f
|

4
|V

m
|) edges = O(|V

f
|

8
|V

m
|

2
)



Result 2 – Support graphs – G
S

G
S

= skeleton of G
C 

– subgraph of G
C

induced by exactly one 

cell-node per cluster and isomorphic to G
X

CHs G
X

G
S



Result 2 – Characterization

Theorem. An FM-bigraph G admits a planar 0-bend drawing in the 

CH restriction setting  there exists a skeleton G
S

CHs G
X

G
S



Result 2 – Hardness

It is in general NP-hard to decide whether a certain skeleton exists in a 

clustered graph defined as in our problem …. But the problem is 

tractable for specific types of G
X

CHs G
X

G
S



Result 2 – Tractability

Theorem. If G
X

is a cactus (or a forest of cacti), one can test in 

polynomial time whether G admits a planar 0-bend drawing

CHs G
X
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X

is a path
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Result 2 – When G
X

is a cactus

CHs
G

X
T

decomposition tree



Result 2 – When G
X

is a cactus

T

each node of T is 

either a cluster of 

G
c
or a cycle of 

clusters of G
C



Result 2 – When G
X

is a cactus

anchor clustersanchor clusters

T



Result 2 – When G
X

is a cactus

visit T bottom-up

to test whether a 

skeleton exists

T



Result 2 – When G
X

is a cactus

T

If a leaf is a single cluster, 

all its cells are made active

visit T bottom-up

to test whether a 

skeleton exists



Result 2 – When G
X

is a cactus

T
If a leaf is a cycles of 

clusters, the active cells are 

computed as for the case 

in which G
X

is a cycle, 

where the anchor cluster 

acts as the first cluster 

visit T bottom-up

to test whether a 

skeleton exists



Result 2 – When G
X

is a cactus

T

for an internal node: 

1) first remove the cells not 

adjacent to active cells in 

the clusters connected to 

the anchor clusters of 

their children

2) then compute the active 

cells as for the leaves

visit T bottom-up

to test whether a 

skeleton exists



Result 2 – When G
X

is a cactus

T visit T bottom-up

to test whether a 

skeleton exists

If two clusters coincide, 

remove from the father 

the non-active cells of its 

child



Result 2 – When G
X

is a cactus

visit T bottom-up

to test whether a 

skeleton exists

the test is positive iff

the anchor cluster of 

the root has an active 

vertex; in which case 

the skeleton is easily 

reconstructed with a 

top-down visit

T



Result 3 – Model for 1-bend drawings

S
1

S
2

S
3

• fixed vertices are 

partitioned into a 

sequence of plane strips

• mobile vertices are 

placed outside the strips

• an edge cannot traverse 

a strip and must reach 

the fixed vertex with a 

vertical segment



Result 3 – Model for 1-bend drawings

Theorem. For a given set of strips that partitions the fixed vertices, 

one can test in linear time whether a 1-bend drawing exists

Proof: It is equivalent to assume that the fixed vertices in each strip 

lie on a single horizontal line; then, reduce to planarity testing

S
1

S
2

S
3

C
1

C
2

C
3



Open questions

• Question 1. Are there polynomial-time testing algorithms for 0-bend 

drawings in the CH restriction setting for families of G
X

other than 

cacti?

• Question 2. Is it possible to find more efficient algorithms for 0-bend 

drawings?

• Question 3. What about relaxing the planarity requirement? e.g., by 

considering heuristics or exact algorithms for crossing/bend 

minimization?




