Planar Drawings of
 Fixed-Mobile Bigraphs

M. Bekos, F. De Luca, W. Didimo, T. Mchedlidze, M. Nöllenburg, A. Symvonis, I.G. Tollis

Problem

FM-bigraph: $G=\left(V_{f}, V_{m}\right.$, E) bipartite graph

- V_{f} fixed vertices (predefined locations)
$\bigcirc V_{m}$ mobile vertices (can be freely placed)
K-bend FM-bigraph problem: Does G admit a planar k-bend drawing, i.e., a crossing-free drawing with at most k bends per edge ($\mathrm{k} \geq 0$)?
bend number of G : The minimum k for which G admits a planar k-bend drawing

Motivation

- Fixed vertices $=$ geographic locations
- Mobile vertices $=$ simple attributes
- Attributes are connected to their locations

Ethnic Restaurants in Umbria

Related work

Related work: Point Labeling

Related work: Partial Drawing

Extending a partial drawing to a planar straight-line drawing

FM-bigraphs

- NP-hard in the general case Patrignani, IJFCS 2006
- Tractable for restricted cases
e.g., prescribed outer face, convex drawings

Related work: Point-set Embedding

Each vertex is mapped to a specific point or to a finite set of points

Every planar graph has a planar embedding at fixed vertex
locations ($\mathrm{O}(\mathrm{n})$ bends per edge)

- Pach and Wenger, Graphs and
- Badent et al., TCS 2008

Consequence: Any planar FMbigraph has a planar $O(n)$-bend drawing

Related work: Constrained Drawings

Drawing planar partitions
(vertices on predefined lines or plane regions)

- Biedl, SoCG 1998
- Biedl, Kaufmann, Mutzel, WG 1998

Contribution

- Result 1. Computing the bend number of an FM-bigraph is NP-hard (connection with point-set embedding)
- Result 2. When mobile vertices lie in the convex hull (CH) of their neighbors, testing the existence of 0-bend drawings: (i) is in NP; (ii) is in P (tractable) if the intersection graph of the CH s is a cactus
- Result 3. A practical model for 1-bend drawings of FM-bigraphs, inspired by the boundary labeling approach, with polynomial-time algorithms

Result 1 - NP-hardness

Theorem. The 0-bend FM-bigraph problem is NP-hard, even if each vertex has degree at most two

Proof: Reduction from 1-bend point-set embedding with mapping (which is NP-hard - Goaoc et al., DCG 2009)

Result 1 - More in general

Theorem. The k-bend FM-bigraph problem is at least hard as the ($2 \mathrm{k}+1$)-bend point-set embedding with mapping
Proof: Same reduction

Result 1 - Special case

Theorem. If all fixed vertices are collinear, the 0-bend FM-bigraph problem is linear-time solvable
Proof: Reduce to planarity testing

Result 2 - Convex-hull restriction

CH restriction for 0-bend drawings: fixed vertices in general position and every mobile vertex in the CH of its (fixed) neighbors

Good placement

Result 2 - Line arrangement
$\mathrm{O}\left(\left|\mathrm{V}_{\mathrm{f}}\right|^{2}\right)$ lines

Result 2 - Line arrangement

Result 2 - Line arrangement

Result 2 - Discretization

Lemma. Let Γ and Γ^{\prime} be two 0-bend drawings of G that differ only for the position of a (mobile) vertex. If this vertex is in the same cell in the two drawings, then Γ^{\prime} is planar $\Leftrightarrow \Gamma$ is planar

Result 2 - Membership in NP

Theorem. The 0-bend FM-bigraph problem belongs to NP if each mobile vertex is restricted to lie in the convex hull of its neighbors

Proof. A non-deterministic algorithm guesses an assignment of the $\left|V_{m}\right|$ mobile vertices to the $O\left(\left|V_{f}\right|^{4}\right)$ cells; for each assignment, the algorithm (deterministically) checks planarity in $\mathrm{O}\left(\left|V_{f}\right|^{2}\right)$ time.

Result 2 - From NP to P

Result 2 - Support graphs - G_{x}

$\mathrm{G}_{\mathrm{x}}=$ intersection graph of all $\mathrm{CH} s$

- $\mathrm{CH}(\mathrm{u}) \leftrightarrow$ the CH of the neighbors of u

Result 2 - Support graphs - G_{C}

$\mathrm{G}_{\mathrm{C}}=$ clustered graph

- cluster $\mathrm{C}(\mathrm{u}) \leftrightarrow \mathrm{CH}(\mathrm{u})$ (for each mobile vertex u)
- nodes of $\mathrm{C}(\mathrm{u}) \leftrightarrow$ cells in $\mathrm{CH}(\mathrm{u})$
- edge (a, b) $\leftrightarrow \mathrm{a} \in \mathrm{C}(\mathrm{u}), \mathrm{b} \in \mathrm{C}(\mathrm{v}), \mathrm{CH}(\mathrm{u}) \cap \mathrm{CH}(\mathrm{v}) \neq \varnothing$, and placing u in a and v in b does not cause crossings

Result 2 - Support graphs - G_{C}

$G_{C}=$ clustered graph

- cluster $\mathrm{C}(\mathrm{u}) \leftrightarrow \mathrm{CH}(\mathrm{u})$ (for each mobile vertex u)
- nodes of $\mathrm{C}(\mathrm{u}) \leftrightarrow$ cells in $\mathrm{CH}(\mathrm{u})$
- edge (a, b) $\leftrightarrow \mathrm{a} \in \mathrm{C}(\mathrm{u}), \mathrm{b} \in \mathrm{C}(\mathrm{v}), \mathrm{CH}(\mathrm{u}) \cap \mathrm{CH}(\mathrm{v}) \neq \varnothing$, and placing u in a and v in b does not cause crossings

Result 2 - Support graphs - G_{s}

$G_{S}=$ skeleton of G_{C} - subgraph of G_{C} induced by exactly one cell-node per cluster and isomorphic to G_{x}

Result 2 - Characterization

Theorem. An FM-bigraph G admits a planar 0-bend drawing in the CH restriction setting \Leftrightarrow there exists a skeleton G_{s}

Result 2 - Hardness

It is in general NP-hard to decide whether a certain skeleton exists in a clustered graph defined as in our problem But the problem is tractable for specific types of G_{x}

G_{x}

Result 2 - Tractability

Theorem. If G_{x} is a cactus (or a forest of cacti), one can test in polynomial time whether G admits a planar 0-bend drawing

Result 2 - When G_{x} is a path

CHs

G_{c}

$C\left(u_{1}\right)$
$\mathrm{C}\left(\mathrm{u}_{2}\right)$
$\mathrm{C}\left(\mathrm{u}_{3}\right)$
$C\left(\mathrm{u}_{4}\right)$
$C\left(u_{5}\right)$

Result 2 - When G_{x} is a path

Result 2 - When G_{x} is a path

CH

propagation

G_{c}

Result 2 - When G_{x} is a path

CH

propagation

G_{c}

$C\left(u_{1}\right)$
$\mathrm{C}\left(\mathrm{u}_{2}\right)$
$C\left(u_{3}\right)$
$C\left(\mathrm{u}_{4}\right)$
$C\left(u_{5}\right)$

Result 2 - When G_{x} is a path

CHs

propagation

Result 2 - When G_{x} is a path

CHs

> propagation

Result 2 - When G_{x} is a path

CHs

G_{c}

remove not visited nodes
$C\left(u_{1}\right)$
$\mathrm{C}\left(\mathrm{u}_{2}\right)$
$\mathrm{C}\left(\mathrm{u}_{3}\right)$
$C\left(\mathrm{u}_{4}\right)$
$C\left(u_{5}\right)$

Result 2 - When G_{x} is a path

CHs

G_{c}

$$
{ }_{c}
$$

choose a node in the last cluster and reconstruct a path backward

Result 2 - When G_{x} is a path

$\mathrm{CH} s$

G_{c}

Result 2 - When G_{x} is a cycle

CHs

Result 2 - When G_{x} is a cycle

CHs

Result 2 - When G_{x} is a cycle

CHs

propagation

Result 2 - When G_{x} is a cycle

CHs

propagation

Result 2 - When G_{x} is a cycle

CHs

propagation

Result 2 - When G_{x} is a cycle

CHs

propagation

Result 2 - When G_{x} is a cycle

CHs

Result 2 - When G_{x} is a cycle

CHs

Result 2 - When G_{x} is a cycle

CHs

Result 2 - When G_{x} is a cycle

CHs

Result 2 - When G_{x} is a cycle

CHs

propagation

Result 2 - When G_{x} is a cycle

CHs

Result 2 - When G_{x} is a cycle

CHs

Result 2 - When G_{x} is a cycle

CHs

Result 2 - When G_{x} is a cycle

CHs

check pairs of adjacent nodes between the first and the last cluster

Result 2 - When G_{x} is a cycle

CHs

check pairs of adjacent nodes between the first and the
 last cluster

Result 2 - When G_{x} is a cycle

CHs

Result 2 - When G_{x} is a cactus

decomposition tree

Result 2 - When G_{x} is a cactus

each node of T is either a cluster of G_{c} or a cycle of clusters of G_{C}

Result 2 - When G_{x} is a cactus

Result 2 - When G_{x} is a cactus

visit T bottom-up to test whether a skeleton exists

Result 2 - When G_{x} is a cactus

visit T bottom-up to test whether a skeleton exists

If a leaf is a single cluster, all its cells are made active

Result 2 - When G_{x} is a cactus

If a leaf is a cycles of clusters, the active cells are computed as for the case in which G_{x} is a cycle, where the anchor cluster acts as the first cluster

visit T bottom-up to test whether a skeleton exists

Result 2 - When G_{x} is a cactus

visit T bottom-up to test whether a skeleton exists

for an internal node:

1) first remove the cells not adjacent to active cells in the clusters connected to the anchor clusters of their children
2) then compute the active cells as for the leaves

Result 2 - When G_{x} is a cactus

Result 2 - When G_{x} is a cactus
the test is positive iff the anchor cluster of the root has an active vertex; in which case the skeleton is easily reconstructed with a top-down visit

visit T bottom-up to test whether a skeleton exists

Result 3 - Model for 1-bend drawings

- fixed vertices are partitioned into a sequence of plane strips
- mobile vertices are placed outside the strips
- an edge cannot traverse a strip and must reach the fixed vertex with a vertical segment

Result 3 - Model for 1-bend drawings

Theorem. For a given set of strips that partitions the fixed vertices, one can test in linear time whether a 1-bend drawing exists
Proof: It is equivalent to assume that the fixed vertices in each strip lie on a single horizontal line; then, reduce to planarity testing

Open questions

- Question 1. Are there polynomial-time testing algorithms for 0-bend drawings in the CH restriction setting for families of G_{x} other than cacti?
- Question 2. Is it possible to find more efficient algorithms for 0-bend drawings?
- Question 3. What about relaxing the planarity requirement? e.g., by considering heuristics or exact algorithms for crossing/bend minimization?

