Planar Drawings of Fixed-Mobile Bigraphs

M. Bekos, F. De Luca, <u>W. Didimo</u>, T. Mchedlidze, M. Nöllenburg, A. Symvonis, I.G. Tollis

FM-bigraph: $G = (V_f, V_m, E)$ bipartite graph

- V_f fixed vertices (predefined locations)
- $\, \bigcirc \, \, V_m \,$ mobile vertices (can be freely placed)

K-bend FM-bigraph problem: Does G admit a *planar k-bend* drawing, i.e., a crossing-free drawing with at most k bends per edge ($k \ge 0$)?

bend number of G: The minimum k for which G admits a planar k-bend drawing

Motivation

- Fixed vertices = geographic locations
- Mobile vertices = simple attributes
- Attributes are *connected* to their locations

Bekos et al., JGAA 2015

Related work: Partial Drawing **Partial** Extending a partial drawing to Drawing a planar straight-line drawing FM-bigraphs • NP-hard in the general case Patrignani, IJFCS 2006 Tractable for restricted cases

e.g., prescribed outer face, convex drawings

Related work: Point-set Embedding

FM-bigraphs

Each vertex is mapped to a specific point or to a finite set of points

Consequence: Any planar FMbigraph has a planar O(n)-bend drawing Every planar graph has a planar embedding at fixed vertex locations (O(n) bends per edge)

- Pach and Wenger, Graphs and Comb. 2001
- Badent et al., TCS 2008

Related work: Constrained Drawings

Drawing planar partitions (vertices on predefined lines or plane regions)

- Biedl, SoCG 1998
- Biedl, Kaufmann, Mutzel, WG 1998

FM-bigraphs Constrained Drawings of Bigraphs

Goo: March Geletiautate	Biggk Fullt Taste Vmai Bo. Vegetable Salad Taste
Nama Cha Tea	March of Koaras Chocolate
Umai Bo: Chicken Curry Taste	Imai Bo: Pork Cutlet Taste
KS Green Tea	BUBBLEMAN II: South Pole Soda
Ohi Ocha Tea	Showa Spaghetti
Vegetables Life 100 (Can)	Bon Curry Gold 21 Modertely Hot
©hi Ocha Tea: Uji Tea	Umai Bo: Teriyaki Burger Taste
dppei-chan Yomise no Yakisoba	Marushin Fresh Sausage
Wakamusya Tea: Clear Taste	Meiji Hight Milk Chocolate
Natural Mineral Barley Tea	Umai Bo: Salami Sausage Taste
Nissin Fried Noodles UFO	18h Dodekamin Gold
Ohi Ocha Tea: Strong Taste 20h	Unai Bo: Corn Potage Taste
tohen Oolong Tea 14h 02	21h 00h Umai Bo: Cheese Taste
Seinyu Nana Ch 11h 22h	Meiji Milk Chocolate
Oronamin C	Umai Bo: Mentai Taste
Magic Flake: Peanut Butter	Lipovitan D
08h Egg Jujitu Xarau (100 Karau	Cora Cola ning Brioton Tea 07h
101	á V.
	04h
05h	

Anchored Maps K. Misue, IEICE Trans. 2008

- Result 1. Computing the bend number of an FM-bigraph is NP-hard (connection with point-set embedding)
- Result 2. When mobile vertices lie in the convex hull (CH) of their neighbors, testing the existence of 0-bend drawings: (i) is in NP; (ii) is in P (tractable) if the intersection graph of the CHs is a cactus
- Result 3. A practical model for 1-bend drawings of FM-bigraphs, inspired by the boundary labeling approach, with polynomial-time algorithms

Result 1 – NP-hardness

Theorem. The O-bend FM-bigraph problem is NP-hard, even if each vertex has degree at most two

Proof: Reduction from 1-bend point-set embedding with mapping (which is NP-hard – Goaoc et al., DCG 2009)

Result 1 – More in general

Theorem. The k-bend FM-bigraph problem is at least hard as the (2k+1)-bend point-set embedding with mapping

Proof: Same reduction

Result 1 – Special case

Theorem. If all fixed vertices are collinear, the O-bend FM-bigraph problem is linear-time solvable

Proof: Reduce to planarity testing

Result 2 – Convex-hull restriction

CH restriction for O-bend drawings: fixed vertices in general position and every mobile vertex in the CH of its (fixed) neighbors

Result 2 – Discretization

Lemma. Let Γ and Γ' be two 0-bend drawings of G that differ only for the position of a (mobile) vertex. If this vertex is in the same cell in the two drawings, then Γ' is planar $\Leftrightarrow \Gamma$ is planar

Result 2 – Membership in NP

Theorem. The O-bend FM-bigraph problem belongs to NP if each mobile vertex is restricted to lie in the convex hull of its neighbors

Proof. A non-deterministic algorithm guesses an assignment of the $|V_m|$ mobile vertices to the $O(|V_f|^4)$ cells; for each assignment, the algorithm (deterministically) checks planarity in $O(|V_f|^2)$ time.

Result 2 – From NP to P

Result 2 – Support graphs – G_X

 G_X = intersection graph of all CHs • CH(u) \leftrightarrow the CH of the neighbors of u

Result 2 – Support graphs – G_C

 G_C = clustered graph

- cluster C(u) \leftrightarrow CH(u) (for each mobile vertex u)
- nodes of $C(u) \leftrightarrow$ cells in CH(u)
- edge (a,b) $\leftrightarrow a \in C(u)$, $b \in C(v)$, $CH(u) \cap CH(v) \neq \emptyset$, and placing u in a and v in b does not cause crossings

Result 2 – Support graphs – G_C

 G_C = clustered graph

- cluster C(u) \leftrightarrow CH(u) (for each mobile vertex u)
- nodes of $C(u) \leftrightarrow$ cells in CH(u)
- edge (a,b) $\leftrightarrow a \in C(u)$, $b \in C(v)$, $CH(u) \cap CH(v) \neq \emptyset$, and placing u in a and v in b does not cause crossings

Result 2 – Support graphs – G_s

 G_{S} = skeleton of G_{C} – subgraph of G_{C} induced by exactly one cell-node per cluster and isomorphic to G_{X}

Result 2 – Characterization

Theorem. An FM-bigraph G admits a planar O-bend drawing in the CH restriction setting \Leftrightarrow there exists a skeleton G_s

Result 2 – Hardness

It is in general NP-hard to decide whether a certain skeleton exists in a clustered graph defined as in our problem But the problem is tractable for specific types of G_X

Result 2 – Tractability

Theorem. If G_X is a cactus (or a forest of cacti), one can test in polynomial time whether G admits a planar 0-bend drawing

 $C(u_1)$

Result 2 – When G_X is a path

 $C(u_3)$

 $C(u_2)$

 $C(u_4)$

 $C(u_5)$

choose a node in the last cluster and reconstruct a path backward

decomposition tree

each node of T is either a cluster of G_c or a cycle of clusters of G_c

visit T <u>bottom-up</u> to test whether a skeleton exists

If a <u>leaf</u> is a cycles of clusters, the active cells are computed as for the case in which G_X is a cycle, where the anchor cluster acts as the first cluster

visit T <u>bottom-up</u> to test whether a skeleton exists

 \mathbf{O}

visit T <u>bottom-up</u> to test whether a skeleton exists

for an <u>internal</u> node:

- first remove the cells not adjacent to active cells in the clusters connected to the anchor clusters of their children
- 2) then compute the active cells as for the leaves

Τ visit T bottom-up to test whether a skeleton exists If two clusters coincide, remove from the father the non-active cells of its child 0

the test is <u>positive</u> iff the anchor cluster of the root has an active vertex; in which case the skeleton is easily reconstructed with a top-down visit

visit T <u>bottom-up</u> to test whether a skeleton exists

Result 3 – Model for 1-bend drawings

- fixed vertices are partitioned into a sequence of plane strips
- mobile vertices are placed outside the strips
- an edge cannot traverse a strip and must reach the fixed vertex with a vertical segment

Result 3 – Model for 1-bend drawings

Theorem. For a given set of strips that partitions the fixed vertices, one can test in linear time whether a 1-bend drawing exists

Proof: It is equivalent to assume that the fixed vertices in each strip lie on a single horizontal line; then, reduce to planarity testing

- Question 1. Are there polynomial-time testing algorithms for 0-bend drawings in the CH restriction setting for families of G_X other than cacti?
- Question 2. Is it possible to find more efficient algorithms for 0-bend drawings?
- Question 3. What about relaxing the planarity requirement? e.g., by considering heuristics or exact algorithms for crossing/bend minimization?

