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Colored PSE

In a colored PSE vertices and points are colored; a vertex can
only be represented by a point of its color

Colors are used to describe the mapping between vertices
and points. In particular:

1 color = No mapping

« 1 colors = Complete mapping

« 1 < k < n = Partial mapping
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e Every 3-colored caterpillar whose leaves all have the same
color admits a PSE with CC < 5 onto any 3-colored point set.

e Every 4-colored path such that the vertices of two colors
precede all the vertices of the other two colors admits a PSE
with CC < 5 onto any 4-colored point set.
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3-colored PSE of stars

Our result:
« There exists a 3-colored forest of 3 stars F), and a point
set S, such that in any PSE of Fj, on S,, there are Q(n%)

edges with Q(n3) bends.

What I will show you:
« There exists a 3-colored forest of 3 stars F;, and a point
set S, such that in any PSE of F}, on S, there is at least
one edge with 2(n3) bends.
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A useful result

Theorem 1 If a graph G has a PSE on a semiconvex point set
S s.t. each crosses C'H(.S) at most b times, then G admits a
PSE on S with CC < 2b + 1.

h—
CC =5
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Another useful result

Theorem 2 [3] For every h > 0 there exists a 3-colored
biconnected outerplanar graph G,,, withn > T9h?, and a
3-colored set of points S, s.t. in every PSE of GG,, on S,, there is
at least one edge with more than h bends.

A 3-colored forest of 3 stars

Sn

High-level idea
We prove that

if £,, admits a PSE on 5,

with o(n3) bends per edge

= then (,, admits a PSE on .5,
with o(n3) bends per edge

[3] Di Giacomo et al. JGAA 2008



From a PSE of F,, to a PSE of &,

Lemma 1 If F,, has a PSE on S, s.t.
1. each edge crosses C'H(S,,) at most b times;

2. there exists an uncrossed triplet
then G,, has a PSE on S, such that each edge crosses CH (S),)

at most 3b + 2 times.

- leav
uncrossed triplet caves

no crossing of C H (.S,,) here



From a PSE of F,, to a PSE of &,
Vo
v AN
U2

%m




From a PSE of F,, to a PSE of &,

Vo
X uncrossed triplet
b,
U2

%m




From a PSE of F,, to a PSE of &,

Vo

We now add this cycle




From a PSE of F,, to a PSE of &,

Vo




From a PSE of F,, to a PSE of &,

Vo




From a PSE of F,, to a PSE of &,

Vo




From a PSE of F,, to a PSE of &,

Vo




From a PSE of F,, to a PSE of &,

Vo




From a PSE of F,, to a PSE of &,

the added edges
cross CH(S,) at
most 2b 4 2 times




From a PSE of F,, to a PSE of &,

Vo




Vo

From a PSE of F,, to a PSE of &,

We now add the edges between
leaves of the same color




From a PSE of F,, to a PSE of &,

We now add the edges between
7 leaves of the same color




From a PSE of F,, to a PSE of &,

We now add the edges between
7 leaves of the same color




Vo

From a PSE of F,, to a PSE of &,




From a PSE of F,, to a PSE of &,




From a PSE of F,, to a PSE of &,




From a PSE of F, to a PSE of (&,




From a PSE of F, to a PSE of (&,




From a PSE of F,, to a PSE of &,

~ the added edges
3 \ cross CH(S,,) at
most 2b times




From a PSE of F,, to a PSE of &,

We now add the last three edges




From a PSE of F,, to a PSE of &,

Vo
—
We now add the last three edges
b,
/
(%) \%U

1




From a PSE of F,, to a PSE of &,

Vo
—
We now add the last three edges
b,
/
(%) \%U

1




From a PSE of F,, to a PSE of &,




From a PSE of F,, to a PSE of &,




From a PSE of F,, to a PSE of &,




From a PSE of F,, to a PSE of &,

the added edges
cross CH (S
most 30 + 2 tlmes




From a PSE of F,, to a PSE of &,




From a PSE of F,, to a PSE of &,




From a PSE of F,, to a PSE of &,

Vo
/




From a PSE of F,, to a PSE of &,

Vo
/




Putting all together

F, admits a PSE with %jdlm'ts a PSE “f/lth
CC<b Crossings o

(,, admits a PSE with
6b + 2 crossings of

CH(S,)

(+,, admits a PSE with
CC<12b+5




Comments

Since there exists a caterpillar that is a supergraph of F), for
1

every n, {2(n3) bends may be necessary also for 3-colored

caterpillars
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3-colored PSE of paths

Our result:
 Every 3-colored path admits a PSE with CC < 5 onto any
3-colored point set.
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Proof approach

Path

Sequence of colors

Compute a 2-page topological book
embedding consistent with the

sequence of colors and with at most
2 spine crossings per edges
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Path

Use Kaufmann and Wiese [6] to
obtain a PSE with CC < 5

[6] Kaufmann, Wiese JGAA 2002
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2-page topological book embedding of paths

Every 3-colored path admits a 2-page topological book
embedding with at most 2 spine crossing per edge for any
given sequence of colors
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2-page topological book embedding of paths

If no prefix of P and ¢’ are
balanced we say that P and ¢”
are minimally balanced

M'i’nimally balanced



2-page topological book embedding of paths

We prove that P’ admits a 2-page topological book
embedding consistent with ¢’ s.t.
o there are at most 2 spine crossings per edge
o the first vertex is accessible from above without spine
crossings
o the last vertex is accessible from below with one spine
crossing

_______
" =~
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2-page topological book embedding of paths

/ A Let’s add back the
third color
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2-page topological book embedding of paths
Path P
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Open problems

Investigate whether the lower bound for the 3-colored forest
of stars is tight.

Characterize the 3-colored caterpillars that admit a 3-colored
point-set embedding with constant curve complexity on any
given set of points.

Study whether constant curve complexity can always by
guaranteed for 4-colored paths.
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