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Point-set Embedding (PSE)

G S

A Point-set embedding of G on S is a planar drawing such
that each vertex is represented by a point of S
The curve complexity (CC) of a PSE is the maximum number
of bends along any edge
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Colored PSE

Colors are used to describe the mapping between vertices
and points. In particular:
• 1 color ≡ No mapping
• n colors ≡ Complete mapping
• 1 < k < n ≡ Partial mapping

In a colored PSE vertices and points are colored; a vertex can
only be represented by a point of its color
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Sn such that in any PSE of Fn on Sn there are Ω(n

2
3 ) edges

with Ω(n
1
3 ) bends.

⇒ There exists a 3-colored caterpillar Cn and a point set
Sn such that in any PSE of Cn on Sn there are Ω(n

2
3 )

edges with Ω(n
1
3 ) bends.

• Every 3-colored path admits a PSE with CC ≤ 5 onto any
3-colored point set.

• Every 3-colored caterpillar whose leaves all have the same
color admits a PSE with CC ≤ 5 onto any 3-colored point set.

• Every 4-colored path such that the vertices of two colors
precede all the vertices of the other two colors admits a PSE
with CC ≤ 5 onto any 4-colored point set.
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PSE of stars in the real world

Flow maps

Verbeek, Buchin, Speckmann IEEE TVCG 2011

Route maps

h�p://weekendblitz.com/airbus-a380-current-routes-operators/
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3-colored PSE of stars

Our result:
• There exists a 3-colored forest of 3 stars Fn and a point

set Sn such that in any PSE of Fn on Sn there are Ω(n
2
3 )

edges with Ω(n
1
3 ) bends.

What I will show you:
• There exists a 3-colored forest of 3 stars Fn and a point

set Sn such that in any PSE of Fn on Sn there is at least
one edge with Ω(n

1
3 ) bends.
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S s.t. each crosses CH(S) at most b times, then G admits a
PSE on S with CC ≤ 2b+ 1.



A useful result

Theorem 1 If a graph G has a PSE on a semiconvex point set
S s.t. each crosses CH(S) at most b times, then G admits a
PSE on S with CC ≤ 2b+ 1.

b = 2



A useful result

Theorem 1 If a graph G has a PSE on a semiconvex point set
S s.t. each crosses CH(S) at most b times, then G admits a
PSE on S with CC ≤ 2b+ 1.

b = 2



A useful result

Theorem 1 If a graph G has a PSE on a semiconvex point set
S s.t. each crosses CH(S) at most b times, then G admits a
PSE on S with CC ≤ 2b+ 1.

b = 2



A useful result

Theorem 1 If a graph G has a PSE on a semiconvex point set
S s.t. each crosses CH(S) at most b times, then G admits a
PSE on S with CC ≤ 2b+ 1.

b = 2



A useful result

Theorem 1 If a graph G has a PSE on a semiconvex point set
S s.t. each crosses CH(S) at most b times, then G admits a
PSE on S with CC ≤ 2b+ 1.

b = 2



A useful result

Theorem 1 If a graph G has a PSE on a semiconvex point set
S s.t. each crosses CH(S) at most b times, then G admits a
PSE on S with CC ≤ 2b+ 1.

b = 2



A useful result

Theorem 1 If a graph G has a PSE on a semiconvex point set
S s.t. each crosses CH(S) at most b times, then G admits a
PSE on S with CC ≤ 2b+ 1.

b = 2

CC = 5
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Theorem 2 [3] For every h > 0 there exists a 3-colored
biconnected outerplanar graph Gn, with n ≥ 79h3, and a
3-colored set of points Sn s.t. in every PSE of Gn on Sn there is
at least one edge with more than h bends.
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Another useful result

[3] Di Giacomo et al. JGAA 2008

Sn
A 3-colored forest of 3 stars

v0

v1v2

Fn

High-level idea
We prove that

if Fn admits a PSE on Sn

with o(n
1
3 ) bends per edge

then Gn admits a PSE on Sn

with o(n
1
3 ) bends per edge

Theorem 2 [3] For every h > 0 there exists a 3-colored
biconnected outerplanar graph Gn, with n ≥ 79h3, and a
3-colored set of points Sn s.t. in every PSE of Gn on Sn there is
at least one edge with more than h bends.



From a PSE of Fn to a PSE of Gn

Lemma 1 If Fn has a PSE on Sn s.t.
1. each edge crosses CH(Sn) at most b times;
2. there exists an uncrossed triplet
then Gn has a PSE on Sn such that each edge crosses CH(Sn)
at most 3b+ 2 times.

uncrossed triplet leaves

no crossing of CH(Sn) here
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Pu�ing all together

⇒

⇓

Fn admits a PSE with
2b+ 1 crossings of
CH(Sn)

Gn admits a PSE with
6b+ 2 crossings of
CH(Sn)

Lm. 1

Fn admits a PSE with
CC ≤ b

Gn admits a PSE with
CC ≤ 12b+ 5 ⇐

Th. 1



Comments

Since there exists a caterpillar that is a supergraph of Fn for
every n, Ω(n

1
3 ) bends may be necessary also for 3-colored

caterpillars

v0

v1v2



3-Colored PSE of paths



3-colored PSE of paths

Our result:
• Every 3-colored path admits a PSE with CC ≤ 5 onto any

3-colored point set.
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Path

Point set

Project the points on a
horizontal line (spine)
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Proof approach

Path

Sequence of colors

Compute a 2-page topological book
embedding consistent with the
sequence of colors and with at most
2 spine crossings per edges
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Proof approach

Path

[6] Kaufmann, Wiese JGAA 2002

Use Kaufmann and Wiese [6] to
obtain a PSE with CC ≤ 5
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2-page topological book embedding of paths

Every 3-colored path admits a 2-page topological book
embedding with at most 2 spine crossing per edge for any
given sequence of colors
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Sequence of colors σ



2-page topological book embedding of paths

Remove the third color

Path P

Sequence of colors σ



2-page topological book embedding of paths

Path P ′

Sequence of colors σ′
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2-page topological book embedding of paths
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2-page topological book embedding of paths

If no prefix of P ′′ and σ′′ are
balanced we say that P ′′ and σ′′

are minimally balanced

# of • = 7 # of • = 5

# of • = 7 # of • = 5

P ′′

σ′′

P ′

σ′



2-page topological book embedding of paths

# of • = 5 # of • = 3

# of • = 5 # of • = 3

Minimally balanced

If no prefix of P ′′ and σ′′ are
balanced we say that P ′′ and σ′′

are minimally balanced

P ′′

σ′′

P ′

σ′



2-page topological book embedding of paths

We prove that P ′ admits a 2-page topological book
embedding consistent with σ′ s.t.
• there are at most 2 spine crossings per edge
• the first vertex is accessible from above without spine

crossings
• the last vertex is accessible from below with one spine

crossing



2-page topological book embedding of paths

Proof by induction on the number of vertices
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Open problems

Investigate whether the lower bound for the 3-colored forest
of stars is tight.

Study whether constant curve complexity can always by
guaranteed for 4-colored paths.

Characterize the 3-colored caterpillars that admit a 3-colored
point-set embedding with constant curve complexity on any
given set of points.
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