Colored Point-set Embeddings of Acyclic Graphs

Emilio Di Giacomo¹, Leszek Gasieniec², Giuseppe Liotta¹, Alfredo Navarra¹

¹Università degli Studi di Perugia, Italy ²University of Liverpool, UK

Given a planar graph G=(V, E) and a point set S(|V|=|S|)

Given a planar graph G=(V, E) and a point set S(|V|=|S|)A *Point-set embedding of G on S* is a planar drawing such that each vertex is represented by a point of S

Given a planar graph G=(V, E) and a point set S(|V|=|S|)A *Point-set embedding of G on S* is a planar drawing such that each vertex is represented by a point of S

The *curve complexity (CC)* of a PSE is the maximum number of bends along any edge

G

Given a planar graph G=(V, E) and a point set S(|V|=|S|)A *Point-set embedding of G on S* is a planar drawing such that each vertex is represented by a point of S

The *curve complexity (CC)* of a PSE is the maximum number of bends along any edge

G

Given a planar graph G=(V, E) and a point set S(|V|=|S|)A *Point-set embedding of G on S* is a planar drawing such that each vertex is represented by a point of S

The *curve complexity (CC)* of a PSE is the maximum number of bends along any edge

G

Colored PSE

In a *colored PSE* vertices and points are colored; a vertex can only be represented by a point of its color

Colors are used to describe the mapping between vertices and points. In particular:

- 1 color \equiv No mapping
- $n \operatorname{colors} \equiv \operatorname{Complete} \operatorname{mapping}$
- $1 < k < n \equiv Partial mapping$

	Paths	Caterp.	Trees	Outerpl.	Planar
1					
2					
3					
• • •	• • •	• • •	• • •	• • •	• • •
n					

[1] Badent, Di Giacomo, Liotta TCS 2008 [2] Bose CGTA 2002 [3] Di Giacomo et al. JGAA 2008 [4] Di Giacomo, Liotta, Tratta UECS 2006 [5] Kanaka, Kana, Suzuki TTCC 2004

[4] Di Giacomo, Liotta, Trotta IJFCS 2006 [5] Kaneko, Kano, Suzuki TTGG 2004

	Paths	Caterp.	Trees	Outerpl.	Planar
				0 [2]	
				0 [trivial]	
ົ ງ					
9					
J					
•••	• • •	• • •	• • •	• • •	• • •
n					

[1] Badent, Di Giacomo, Liotta TCS 2008 [2] Bose CGTA 2002 [3] Di Giacomo et al. JGAA 2008 [4] Di Giacomo, Liotta, Tratta UECS 2006 [5] Kanaka, Kana, Suzuki TTCC 2004

[4] Di Giacomo, Liotta, Trotta IJFCS 2006 [5] Kaneko, Kano, Suzuki TTGG 2004

	Paths	Caterp.	Trees	Outerpl.	Planar
1	0	0	0	0 [2]	
	0 [trivial]	0 [trivial]	0 [trivial]	0 [trivial]	
9					
0					
3					
• • •	• • •	• • •	• • •	• • •	• • •

[1] Badent, Di Giacomo, Liotta TCS 2008 [2] Bose CGTA 2002 [3] Di Giacomo et al. JGAA 2008 [4] Di Giacomo, Liotta, Tratta UECS 2006 [5] Kanaka, Kana, Suzuki TTCC 2004

[4] Di Giacomo, Liotta, Trotta IJFCS 2006 [5] Kaneko, Kano, Suzuki TTGG 2004

	Paths	Caterp.	Trees	Outerpl.	Planar
-	0	0	0	0 [2]	2 [6]
	0 [trivial]	0 [trivial]	0 [trivial]	0 [trivial]	2 [6]
3					
• • •					
$\mid n$					

[1] Badent, Di Giacomo, Liotta TCS 2008 [2] Bose CGTA 2002 [3] Di Giacomo et al. JGAA 2008 [4] Di Giacomo, Liotta, Tratta UECS 2006 [5] Kanaka, Kana, Suzuki TTCC 2004

[4] Di Giacomo, Liotta, Trotta IJFCS 2006 [5] Kaneko, Kano, Suzuki TTGG 2004

	Paths	Caterp.	Trees	Outerpl.	Planar
1	0	0	0	0 [2]	2 [6]
$\begin{array}{c} 1 \\ 2 \\ 3 \\ \cdot \cdot \cdot \\ n \end{array}$	0 [trivial]	0 [trivial]	0 [trivial]	0 [trivial]	2 [6]
9					
9					
3					
• • •	• • •	• • •	• • •	• • •	• • •
					O(n) [7]
10	$\Omega(n)$ [7]				

[1] Badent, Di Giacomo, Liotta TCS 2008 [2] Bose CGTA 2002 [3] Di Giacomo et al. JGAA 2008
[4] Di Giacomo, Liotta, Trotta IJFCS 2006 [5] Kaneko, Kano, Suzuki TTGG 2004

	Paths	Caterp.	Trees	Outerpl.	Planar
1	0	0	0	0 [2]	2 [6]
	0 [trivial]	0 [trivial]	0 [trivial]	0 [trivial]	2 [6]
2					
3					
• • •	• • •		• • •	• • •	
\sim	O(n)	O(n)	O(n)	O(n)	O(n) [7]
10	$\Omega(n)$ [7]	$\Omega(n)$	$\Omega(n)$	$\Omega(n)$	$\Omega(n)$

	Paths	Caterp.	Trees	Outerpl.	Planar
1	0	0	0	0 [2]	2 [6]
	0 [trivial]	0 [trivial]	0 [trivial]	0 [trivial]	2[6]
0	1 [4]	2 [4]		5 [3]	
	1 [5]				
3					
•••	• • •		• • •	• • •	• • •
	O(n)	O(n)	O(n)	O(n)	O(n) [7]
71	$\Omega(n)$ [7]	$\Omega(n)$	$\Omega(n)$	$\Omega(n)$	$\Omega(n)$

	Paths	Caterp.	Trees	Outerpl.	Planar
1	0	0	0	0 [2]	2 [6]
	0 [trivial]	0 [trivial]	0 [trivial]	0 [trivial]	2 [6]
9	1 [4]	2 [4]	5	5 [3]	
	1 [5]	1	1	1	
3					
•••	• • •	• • •	• • •	• • •	• • •
	O(n)	O(n)	O(n)	O(n)	O(n) [7]
	$\Omega(n)$ [7]	$\Omega(n)$	$\Omega(n)$	$\Omega(n)$	$\Omega(n)$

	Paths	Caterp.	Trees	Outerpl.	Planar
1	0	0	0	0 [2]	2 [6]
	0 [trivial]	0 [trivial]	0 [trivial]	0 [trivial]	2[6]
9	1 [4]	2 [4]	5	5 [3]	O(n)
	1 [5]	1	1	1	$\Omega(n)$ [1]
2					
J					
•••	• • •	• • •	• • •	• • •	• • •
n	O(n)	O(n)	O(n)	O(n)	O(n) [7]
	$\Omega(n)$ [7]	$\Omega(n)$	$\Omega(n)$	$\Omega(n)$	$\Omega(n)$

	Paths	Caterp.	Trees	Outerpl.	Planar
1	0	0	0	0 [2]	2 [6]
	0 [trivial]	0 [trivial]	0 [trivial]	0 [trivial]	2 [6]
9	1 [4]	2 [4]	5	5 [3]	O(n)
	1 [5]	1	1	1	$\Omega(n)$ [1]
9					
0				$\Omega(\sqrt[3]{n})$ [3]	
•••	•••	• • •	• • •	• • •	• • •
n	$\overline{O(n)}$	$\overline{O(n)}$	$\overline{O(n)}$	$\overline{O(n)}$	O(n) [7]
	$\Omega(n)$ [7]	$\Omega(n)$	$\Omega(n)$	$\Omega(n)$	$\Omega(n)$

	Paths	Caterp.	Trees	Outerpl.	Planar
1	0	0	0	0 [2]	2 [6]
	0 [trivial]	0 [trivial]	0 [trivial]	0 [trivial]	2[6]
9	1 [4]	2 [4]	5	5 [3]	O(n)
2	1 [5]	1	1	1	$\Omega(n)$ [1]
9	O(n)	O(n)	O(n)	O(n)	O(n)
0	1	1	1	$\Omega(\sqrt[3]{n})$ [3]	$\Omega(n)$
•••	• • •	• • •	• • •	• • •	• • •
n	O(n)	O(n)	O(n)	O(n)	$\overline{O}(n)$ [7]
	$\Omega(n)$ [7]	$\Omega(n)$	$\Omega(n)$	$\Omega(n)$	$\Omega(n)$

	Paths	Caterp.	Trees	Outerpl.	Planar
1	0	0	0	0 [2]	2 [6]
	0 [trivial]	0 [trivial]	0 [trivial]	0 [trivial]	2[6]
9	1 [4]	2 [4]	5	5 [3]	O(n)
2	1 [5]	1	1	1	$\Omega(n)$ [1]
9	O(n)	O(n)	O(n)	O(n)	O(n)
5	1	1	1	$\Omega(\sqrt[3]{n})$ [3]	$\Omega(n)$
•••	• • •	• • •	• • •	• • •	• • •
n	O(n)	O(n)	O(n)	O(n)	O(n) [7]
	$\Omega(n)$ [7]	$\Omega(n)$	$\Omega(n)$	$\Omega(n)$	$\Omega(n)$

• There exists a 3-colored forest of 3 stars F_n and a point set S_n such that in any PSE of F_n on S_n there are $\Omega(n^{\frac{2}{3}})$ edges with $\Omega(n^{\frac{1}{3}})$ bends.

• There exists a 3-colored forest of 3 stars F_n and a point set S_n such that in any PSE of F_n on S_n there are $\Omega(n^{\frac{2}{3}})$ edges with $\Omega(n^{\frac{1}{3}})$ bends.

 \Rightarrow There exists a 3-colored caterpillar C_n and a point set S_n such that in any PSE of C_n on S_n there are $\Omega(n^{\frac{2}{3}})$ edges with $\Omega(n^{\frac{1}{3}})$ bends.

• There exists a 3-colored forest of 3 stars F_n and a point set S_n such that in any PSE of F_n on S_n there are $\Omega(n^{\frac{2}{3}})$ edges with $\Omega(n^{\frac{1}{3}})$ bends.

 \Rightarrow There exists a 3-colored caterpillar C_n and a point set S_n such that in any PSE of C_n on S_n there are $\Omega(n^{\frac{2}{3}})$ edges with $\Omega(n^{\frac{1}{3}})$ bends.

• Every 3-colored path admits a PSE with CC \leq 5 onto any 3-colored point set.

• There exists a 3-colored forest of 3 stars F_n and a point set S_n such that in any PSE of F_n on S_n there are $\Omega(n^{\frac{2}{3}})$ edges with $\Omega(n^{\frac{1}{3}})$ bends.

 \Rightarrow There exists a 3-colored caterpillar C_n and a point set S_n such that in any PSE of C_n on S_n there are $\Omega(n^{\frac{2}{3}})$ edges with $\Omega(n^{\frac{1}{3}})$ bends.

• Every 3-colored path admits a PSE with CC \leq 5 onto any 3-colored point set.

• Every 3-colored caterpillar whose leaves all have the same color admits a PSE with CC ≤ 5 onto any 3-colored point set.

• There exists a 3-colored forest of 3 stars F_n and a point set S_n such that in any PSE of F_n on S_n there are $\Omega(n^{\frac{2}{3}})$ edges with $\Omega(n^{\frac{1}{3}})$ bends.

 \Rightarrow There exists a 3-colored caterpillar C_n and a point set S_n such that in any PSE of C_n on S_n there are $\Omega(n^{\frac{2}{3}})$ edges with $\Omega(n^{\frac{1}{3}})$ bends.

• Every 3-colored path admits a PSE with CC ≤ 5 onto any 3-colored point set.

• Every 3-colored caterpillar whose leaves all have the same color admits a PSE with CC ≤ 5 onto any 3-colored point set.

• Every 4-colored path such that the vertices of two colors precede all the vertices of the other two colors admits a PSE with $CC \le 5$ onto any 4-colored point set.

3-Colored PSE of stars

PSE of stars in the real world

PSE of stars in the real world

Verbeek, Buchin, Speckmann IEEE TVCG 2011

PSE of stars in the real world

http://weekendblitz.com/airbus-a380-current-routes-operators/

3-colored PSE of stars

Our result:

• There exists a 3-colored forest of 3 stars F_n and a point set S_n such that in any PSE of F_n on S_n there are $\Omega(n^{\frac{2}{3}})$ edges with $\Omega(n^{\frac{1}{3}})$ bends.

3-colored PSE of stars

Our result:

• There exists a 3-colored forest of 3 stars F_n and a point set S_n such that in any PSE of F_n on S_n there are $\Omega(n^{\frac{2}{3}})$ edges with $\Omega(n^{\frac{1}{3}})$ bends.

What I will show you:

• There exists a 3-colored forest of 3 stars F_n and a point set S_n such that in any PSE of F_n on S_n there is at least one edge with $\Omega(n^{\frac{1}{3}})$ bends.

Theorem 1 If a graph G has a PSE on a semiconvex point set S s.t. each crosses CH(S) at most b times, then G admits a PSE on S with $CC \le 2b + 1$.

b=2
A useful result

Theorem 1 If a graph G has a PSE on a semiconvex point set S s.t. each crosses CH(S) at most b times, then G admits a PSE on S with $CC \le 2b + 1$.

b=2

A useful result

Theorem 1 If a graph G has a PSE on a semiconvex point set S s.t. each crosses CH(S) at most b times, then G admits a PSE on S with $CC \le 2b + 1$.

b=2

CC = 5

Another useful result

Theorem 2 [3] For every h > 0 there exists a 3-colored biconnected outerplanar graph G_n , with $n \ge 79h^3$, and a 3-colored set of points S_n s.t. in every PSE of G_n on S_n there is at least one edge with more than h bends.

[3] Di Giacomo et al. JGAA 2008

Another useful result

Theorem 2 [3] For every h > 0 there exists a 3-colored biconnected outerplanar graph G_n , with $n \ge 79h^3$, and a 3-colored set of points S_n s.t. in every PSE of G_n on S_n there is at least one edge with more than h bends.

Another useful result

Theorem 2 [3] For every h > 0 there exists a 3-colored biconnected outerplanar graph G_n , with $n \ge 79h^3$, and a 3-colored set of points S_n s.t. in every PSE of G_n on S_n there is at least one edge with more than h bends.

Lemma 1 If F_n has a PSE on S_n s.t. 1. each edge crosses $CH(S_n)$ at most b times; 2. there exists an uncrossed triplet then G_n has a PSE on S_n such that each edge crosses $CH(S_n)$ at most 3b + 2 times.

From a PSE of F_n to a PSE of G_n v_0 uncrossed triplet F_n v_2 v_1

From a PSE of F_n to a PSE of G_n v_0 We now add this cycle F_n v_2 v_1

From a PSE of F_n to a PSE of G_n v_0 F_n v_2 v_1 the added edges cross $CH(S_n)$ at most 2b + 2 times

From a PSE of F_n to a PSE of G_n v_0 F_n v_2 v_1 the added edges cross $CH(S_n)$ at most 3b + 2 times

Putting all together

 F_n admits a PSE with $CC \leq b$

 \Rightarrow

 F_n admits a PSE with 2b + 1 crossings of $CH(S_n)$

 G_n admits a PSE with $CC \le 12b + 5$

 G_n admits a PSE with 6b + 2 crossings of $CH(S_n)$

Comments

Since there exists a caterpillar that is a supergraph of F_n for every n, $\Omega(n^{\frac{1}{3}})$ bends may be necessary also for 3-colored caterpillars

3-Colored PSE of paths

3-colored PSE of paths

Our result:

- Every 3-colored path admits a PSE with CC ≤ 5 onto any 3-colored point set.

Sequence of colors

Sequence of colors

Compute a 2-page topological book embedding consistent with the sequence of colors and with at most 2 spine crossings per edges

[6] Kaufmann, Wiese JGAA 2002

Every 3-colored path admits a 2-page topological book embedding with at most 2 spine crossing per edge for any given sequence of colors

Path P

Sequence of colors σ

Path P

Sequence of colors σ

••••• Remove the third color

Sequence of colors σ'

.

Consider a prefix P'' of P' and the corresponding prefix σ'' of σ'

Consider a prefix P'' of P' and the corresponding prefix σ'' of σ'

If the # of • in P'' = # of • in σ'' AND the # of • in P'' = # of • in σ'' we say that P'' and σ'' are balanced

If no prefix of P'' and σ'' are balanced we say that P'' and σ'' are minimally balanced

If no prefix of P'' and σ'' are balanced we say that P'' and σ'' are minimally balanced

We prove that P' admits a 2-page topological book embedding consistent with σ' s.t.

- there are at most 2 spine crossings per edge
- the first vertex is accessible from above without spine crossings
- the last vertex is accessible from below with one spine crossing

Proof by induction on the number of vertices

Proof by induction on the number of vertices

Base case n = 1, 2

Proof by induction on the number of vertices

Base case n > 2

Proof by induction on the number of vertices

Base case n > 2

Proof by induction on the number of vertices

Base case n > 2

Proof by induction on the number of vertices

Base case n > 2

Proof by induction on the number of vertices

Base case n > 2

Proof by induction on the number of vertices Base case n>2Case 1: P' and σ' are minimally balanced

Proof by induction on the number of vertices Base case n > 2Case 1: P' and σ' are minimally balanced

Proof by induction on the number of vertices Base case n>2Case 1: P' and σ' are minimally balanced

Proof by induction on the number of vertices

Base case n > 2

Proof by induction on the number of vertices

Base case n > 2

Proof by induction on the number of vertices

Base case n > 2

Proof by induction on the number of vertices

Base case n > 2

Case 2: P' and σ' are not minimally balanced

Open problems

Investigate whether the lower bound for the 3-colored forest of stars is tight.

Open problems

Investigate whether the lower bound for the 3-colored forest of stars is tight.

Characterize the 3-colored caterpillars that admit a 3-colored point-set embedding with constant curve complexity on any given set of points.

Open problems

Investigate whether the lower bound for the 3-colored forest of stars is tight.

Characterize the 3-colored caterpillars that admit a 3-colored point-set embedding with constant curve complexity on any given set of points.

Study whether constant curve complexity can always by guaranteed for 4-colored paths.

