Colored Point-set Embeddings of Acyclic Graphs

Emilio Di Giacomo ${ }^{1}$, Leszek Gasieniec ${ }^{2}$, Giuseppe Liotta ${ }^{1}$, Alfredo Navarra ${ }^{1}$

${ }^{1}$ Università degli Studi di Perugia, Italy
${ }^{2}$ University of Liverpool, UK

Point-set Embedding (PSE)

Given a planar graph $G=(V, E)$ and a point set $S(|V|=|S|)$

G

Point-set Embedding (PSE)

Given a planar graph $G=(V, E)$ and a point set $S(|V|=|S|)$ A Point-set embedding of G on S is a planar drawing such that each vertex is represented by a point of S

G

$$
S
$$

Point-set Embedding (PSE)

Given a planar graph $G=(V, E)$ and a point set $S(|V|=|S|)$ A Point-set embedding of G on S is a planar drawing such that each vertex is represented by a point of S
The curve complexity (CC) of a PSE is the maximum number of bends along any edge

G
S

Point-set Embedding (PSE)

Given a planar graph $G=(V, E)$ and a point set $S(|V|=|S|)$ A Point-set embedding of G on S is a planar drawing such that each vertex is represented by a point of S
The curve complexity (CC) of a PSE is the maximum number of bends along any edge

G
S

Point-set Embedding (PSE)

Given a planar graph $G=(V, E)$ and a point set $S(|V|=|S|)$ A Point-set embedding of G on S is a planar drawing such that each vertex is represented by a point of S
The curve complexity (CC) of a PSE is the maximum number of bends along any edge

G
S

Colored PSE

In a colored PSE vertices and points are colored; a vertex can only be represented by a point of its color

Colors are used to describe the mapping between vertices and points. In particular:

- 1 color \equiv No mapping
- n colors \equiv Complete mapping
- $1<k<n \equiv$ Partial mapping

PSE: Known Results (upper and lower bounds on CC)

[1] Badent, Di Giacomo, Liotta TCS 2008 [2] Bose CGTA 2002 [3] Di Giacomo et al. JGAA 2008
[4] Di Giacomo, Liotta, Trotta IJFCS 2006 [5] Kaneko, Kano, Suzuki TTGG 2004
[6] Kaufmann, Wiese JGAA 2002 [7] Pach, Wenger G\&C 2001

PSE: Known Results (upper and lower bounds on CC)

[1] Badent, Di Giacomo, Liotta TCS 2008 [2] Bose CGTA 2002 [3] Di Giacomo et al. JGAA 2008
[4] Di Giacomo, Liotta, Trotta IJFCS 2006 [5] Kaneko, Kano, Suzuki TTGG 2004
[6] Kaufmann, Wiese JGAA 2002 [7] Pach, Wenger G\&C 2001

PSE: Known Results (upper and lower bounds on CC)

[1] Badent, Di Giacomo, Liotta TCS 2008 [2] Bose CGTA 2002 [3] Di Giacomo et al. JGAA 2008
[4] Di Giacomo, Liotta, Trotta IJFCS 2006 [5] Kaneko, Kano, Suzuki TTGG 2004
[6] Kaufmann, Wiese JGAA 2002 [7] Pach, Wenger G\&C 2001

PSE: Known Results (upper and lower bounds on CC)

[1] Badent, Di Giacomo, Liotta TCS 2008 [2] Bose CGTA 2002 [3] Di Giacomo et al. JGAA 2008
[4] Di Giacomo, Liotta, Trotta IJFCS 2006 [5] Kaneko, Kano, Suzuki TTGG 2004
[6] Kaufmann, Wiese JGAA 2002 [7] Pach, Wenger G\&C 2001

PSE: Known Results (upper and lower bounds on CC)

	Paths	Caterp.	Trees	Outerpl.	Planar
1	0	0	0	0 [2]	2 [6]
	0 [trivial]	0 [trivial]	0 [trivial]	0 [trivial]	2 [6]
2					
3					
\cdots	-••	-••	-••	-••	\cdots
n					$O(n)[7]$
	$\Omega(n)[7]$				

[1] Badent, Di Giacomo, Liotta TCS 2008 [2] Bose CGTA 2002 [3] Di Giacomo et al. JGAA 2008
[4] Di Giacomo, Liotta, Trotta IJFCS 2006 [5] Kaneko, Kano, Suzuki TTGG 2004
[6] Kaufmann, Wiese JGAA 2002 [7] Pach, Wenger G\&C 2001

PSE: Known Results (upper and lower bounds on CC)

	Paths	Caterp.	Trees	Outerpl.	Planar
1	0	0	0	0 [2]	$2[6]$
	0 [trivial]	0 [trivial]	0 [trivial]	0 [trivial]	2 [6]
2					
3					
\cdots	\ldots	\ldots	\ldots	\ldots	\ldots
n	$O(n)$	$O(n)$	$O(n)$	$O(n)$	$O(n)[7]$
	$\Omega(n)[7]$	$\Omega(n)$	$\Omega(n)$	$\Omega(n)$	$\Omega(n)$

[1] Badent, Di Giacomo, Liotta TCS 2008 [2] Bose CGTA 2002 [3] Di Giacomo et al. JGAA 2008
[4] Di Giacomo, Liotta, Trotta IJFCS 2006 [5] Kaneko, Kano, Suzuki TTGG 2004
[6] Kaufmann, Wiese JGAA 2002 [7] Pach, Wenger G\&C 2001

PSE: Known Results (upper and lower bounds on CC)

	Paths	Caterp.	Trees	Outerpl.	Planar
1	0	0	0	0 [2]	$2[6]$
	0 [trivial]	0 [trivial]	0 [trivial]	0 [trivial]	$2[6]$
2	$1[4]$	$2[4]$		5 [3]	
	$1[5]$				
3					
\cdots	\ldots	\ldots	\ldots	\ldots	\ldots
n	$O(n)$	$O(n)$	$O(n)$	$O(n)$	$O(n)[7]$
	$\Omega(n)[7]$	$\Omega(n)$	$\Omega(n)$	$\Omega(n)$	$\Omega(n)$

[1] Badent, Di Giacomo, Liotta TCS 2008 [2] Bose CGTA 2002 [3] Di Giacomo et al. JGAA 2008
[4] Di Giacomo, Liotta, Trotta IJFCS 2006 [5] Kaneko, Kano, Suzuki TTGG 2004
[6] Kaufmann, Wiese JGAA 2002 [7] Pach, Wenger G\&C 2001

PSE: Known Results (upper and lower bounds on CC)

	Paths	Caterp.	Trees	Outerpl.	Planar
1	0	0	0	0 [2]	2 [6]
	0 [trivial]	0 [trivial]	0 [trivial]	0 [trivial]	2 [6]
2	1 [4]	2 [4]	5	5 [3]	
	1 [5]	1	1	1	
3					
\ldots	\ldots	\ldots	\ldots	...	
n	$O(n)$	$O(n)$	$O(n)$	$O(n)$	$O(n)[7]$
	$\Omega(n)[7]$	$\Omega(n)$	$\Omega(n)$	$\Omega(n)$	$\Omega(n)$

[1] Badent, Di Giacomo, Liotta TCS 2008 [2] Bose CGTA 2002 [3] Di Giacomo et al. JGAA 2008
[4] Di Giacomo, Liotta, Trotta IJFCS 2006 [5] Kaneko, Kano, Suzuki TTGG 2004
[6] Kaufmann, Wiese JGAA 2002 [7] Pach, Wenger G\&C 2001

PSE: Known Results (upper and lower bounds on CC)

	Paths	Caterp.	Trees	Outerpl.	Planar
1	0	0	0	0 [2]	$2[6]$
	0 [trivial]	0 [trivial]	0 [trivial]	0 [trivial]	$2[6]$
2	$1[4]$	$2[4]$	5	$5[3]$	$O(n)$
	$1[5]$	1	1	1	$\Omega(n)[1]$
3					
\ldots	\ldots	\ldots	\ldots	\ldots	\ldots
n	$O(n)$	$O(n)$	$O(n)$	$O(n)$	$O(n)[7]$
	$\Omega(n)[7]$	$\Omega(n)$	$\Omega(n)$	$\Omega(n)$	$\Omega(n)$

[1] Badent, Di Giacomo, Liotta TCS 2008 [2] Bose CGTA 2002 [3] Di Giacomo et al. JGAA 2008
[4] Di Giacomo, Liotta, Trotta IJFCS 2006 [5] Kaneko, Kano, Suzuki TTGG 2004
[6] Kaufmann, Wiese JGAA 2002 [7] Pach, Wenger G\&C 2001

PSE: Known Results (upper and lower bounds on CC)

	Paths	Caterp.	Trees	Outerpl.	Planar
1	0	0	0	0 [2]	$2[6]$
	0 [trivial]	0 [trivial]	0 [trivial]	0 [trivial]	$2[6]$
2	$1[4]$	$2[4]$	5	$5[3]$	$O(n)$
	$1[5]$	1	1	1	$\Omega(n)[1]$
3					
				$\Omega(\sqrt[3]{n})[3]$	
\ldots	\ldots	\ldots	\ldots	\ldots	\ldots
n	$O(n)$	$O(n)$	$O(n)$	$O(n)$	$O(n)[7]$
	$\Omega(n)[7]$	$\Omega(n)$	$\Omega(n)$	$\Omega(n)$	$\Omega(n)$

[1] Badent, Di Giacomo, Liotta TCS 2008 [2] Bose CGTA 2002 [3] Di Giacomo et al. JGAA 2008
[4] Di Giacomo, Liotta, Trotta IJFCS 2006 [5] Kaneko, Kano, Suzuki TTGG 2004
[6] Kaufmann, Wiese JGAA 2002 [7] Pach, Wenger G\&C 2001

PSE: Known Results (upper and lower bounds on CC)

	Paths	Caterp.	Trees	Outerpl.	Planar
1	0	0	0	0 [2]	2 [6]
	0 [trivial]	0 [trivial]	0 [trivial]	0 [trivial]	2 [6]
2	1 [4]	2 [4]	5	5 [3]	$O(n)$
	1 [5]	1	1	1	$\Omega(n)[1]$
3	$O(n)$	$O(n)$	$O(n)$	$O(n)$	$O(n)$
	1	1	1	$\Omega(\sqrt[3]{n})[3]$	$\Omega(n)$
-	\ldots	\cdots	...	\cdots	
n	$O(n)$	$O(n)$	$O(n)$	$O(n)$	$O(n)[7]$
	$\Omega(n)[7]$	$\Omega(n)$	$\Omega(n)$	$\Omega(n)$	$\Omega(n)$

[1] Badent, Di Giacomo, Liotta TCS 2008 [2] Bose CGTA 2002 [3] Di Giacomo et al. JGAA 2008
[4] Di Giacomo, Liotta, Trotta IJFCS 2006 [5] Kaneko, Kano, Suzuki TTGG 2004
[6] Kaufmann, Wiese JGAA 2002 [7] Pach, Wenger G\&C 2001

PSE: Known Results (upper and lower bounds on CC)

	Paths	Caterp.	Trees	Outerpl.	Planar
1	0	0	0	0 [2]	2 [6]
	0 [trivial]	0 [trivial]	0 [trivial]	0 [trivial]	2 [6]
2	1 [4]	2 [4]	5	5 [3]	$O(n)$
	1 [5]	1	1	1	$\Omega(n)[1]$
3	$O(n)$	$O(n)$	$O(n)$	$O(n)$	$O(n)$
	1	1	1	$\Omega(\sqrt[3]{n})[3]$	$\Omega(n)$
\cdots	\ldots	\ldots	...	\cdots	
n	$O(n)$	$O(n)$	$O(n)$	$O(n)$	$O(n)[7]$
	$\Omega(n)[7]$	$\Omega(n)$	$\Omega(n)$	$\Omega(n)$	$\Omega(n)$

[1] Badent, Di Giacomo, Liotta TCS 2008 [2] Bose CGTA 2002 [3] Di Giacomo et al. JGAA 2008
[4] Di Giacomo, Liotta, Trotta IJFCS 2006 [5] Kaneko, Kano, Suzuki TTGG 2004
[6] Kaufmann, Wiese JGAA 2002 [7] Pach, Wenger G\&C 2001

Our results

- There exists a 3 -colored forest of 3 stars F_{n} and a point set S_{n} such that in any PSE of F_{n} on S_{n} there are $\Omega\left(n^{\frac{2}{3}}\right)$ edges with $\Omega\left(n^{\frac{1}{3}}\right)$ bends.

Our results

- There exists a 3-colored forest of 3 stars F_{n} and a point set S_{n} such that in any PSE of F_{n} on S_{n} there are $\Omega\left(n^{\frac{2}{3}}\right)$ edges with $\Omega\left(n^{\frac{1}{3}}\right)$ bends.
\Rightarrow There exists a 3-colored caterpillar C_{n} and a point set S_{n} such that in any PSE of C_{n} on S_{n} there are $\Omega\left(n^{\frac{2}{3}}\right)$ edges with $\Omega\left(n^{\frac{1}{3}}\right)$ bends.

Our results

- There exists a 3-colored forest of 3 stars F_{n} and a point set S_{n} such that in any PSE of F_{n} on S_{n} there are $\Omega\left(n^{\frac{2}{3}}\right)$ edges with $\Omega\left(n^{\frac{1}{3}}\right)$ bends.
\Rightarrow There exists a 3 -colored caterpillar C_{n} and a point set S_{n} such that in any PSE of C_{n} on S_{n} there are $\Omega\left(n^{\frac{2}{3}}\right)$ edges with $\Omega\left(n^{\frac{1}{3}}\right)$ bends.
- Every 3-colored path admits a PSE with CC ≤ 5 onto any 3 -colored point set.

Our results

- There exists a 3 -colored forest of 3 stars F_{n} and a point set S_{n} such that in any PSE of F_{n} on S_{n} there are $\Omega\left(n^{\frac{2}{3}}\right)$ edges with $\Omega\left(n^{\frac{1}{3}}\right)$ bends.
\Rightarrow There exists a 3-colored caterpillar C_{n} and a point set S_{n} such that in any PSE of C_{n} on S_{n} there are $\Omega\left(n^{\frac{2}{3}}\right)$ edges with $\Omega\left(n^{\frac{1}{3}}\right)$ bends.
- Every 3 -colored path admits a PSE with CC ≤ 5 onto any 3 -colored point set.
- Every 3-colored caterpillar whose leaves all have the same color admits a PSE with CC ≤ 5 onto any 3 -colored point set.

Our results

- There exists a 3 -colored forest of 3 stars F_{n} and a point set S_{n} such that in any PSE of F_{n} on S_{n} there are $\Omega\left(n^{\frac{2}{3}}\right)$ edges with $\Omega\left(n^{\frac{1}{3}}\right)$ bends.
\Rightarrow There exists a 3-colored caterpillar C_{n} and a point set S_{n} such that in any PSE of C_{n} on S_{n} there are $\Omega\left(n^{\frac{2}{3}}\right)$ edges with $\Omega\left(n^{\frac{1}{3}}\right)$ bends.
- Every 3 -colored path admits a PSE with CC ≤ 5 onto any 3 -colored point set.
- Every 3-colored caterpillar whose leaves all have the same color admits a PSE with CC ≤ 5 onto any 3 -colored point set.
- Every 4-colored path such that the vertices of two colors precede all the vertices of the other two colors admits a PSE with $\mathrm{CC} \leq 5$ onto any 4 -colored point set.

3-Colored PSE of stars

PSE of stars in the real world

PSE of stars in the real world

Verbeek, Buchin, Speckmann IEEE TVCG 2011

Flow maps

PSE of stars in the real world

Verbeek, Buchin, Speckmann IEEE TVCG 2011

Flow maps

http://weekendblitz.com/airbus-a380-current-routes-operators/

3-colored PSE of stars

Our result:

- There exists a 3 -colored forest of 3 stars F_{n} and a point set S_{n} such that in any PSE of F_{n} on S_{n} there are $\Omega\left(n^{\frac{2}{3}}\right)$ edges with $\Omega\left(n^{\frac{1}{3}}\right)$ bends.

3-colored PSE of stars

Our result:

- There exists a 3 -colored forest of 3 stars F_{n} and a point set S_{n} such that in any PSE of F_{n} on S_{n} there are $\Omega\left(n^{\frac{2}{3}}\right)$ edges with $\Omega\left(n^{\frac{1}{3}}\right)$ bends.

What I will show you:

- There exists a 3-colored forest of 3 stars F_{n} and a point set S_{n} such that in any PSE of F_{n} on S_{n} there is at least one edge with $\Omega\left(n^{\frac{1}{3}}\right)$ bends.

A useful result

Theorem 1 If a graph G has a PSE on a semiconvex point set S s.t. each crosses $C H(S)$ at most b times, then G admits a PSE on S with $C C \leq 2 b+1$.

A useful result

Theorem 1 If a graph G has a PSE on a semiconvex point set S s.t. each crosses $C H(S)$ at most b times, then G admits a PSE on S with $C C \leq 2 b+1$.

$$
b=2
$$

A useful result

Theorem 1 If a graph G has a PSE on a semiconvex point set S s.t. each crosses $C H(S)$ at most b times, then G admits a PSE on S with $C C \leq 2 b+1$.

A useful result

Theorem 1 If a graph G has a PSE on a semiconvex point set S s.t. each crosses $C H(S)$ at most b times, then G admits a PSE on S with $C C \leq 2 b+1$.

A useful result

Theorem 1 If a graph G has a PSE on a semiconvex point set S s.t. each crosses $C H(S)$ at most b times, then G admits a PSE on S with $C C \leq 2 b+1$.

A useful result

Theorem 1 If a graph G has a PSE on a semiconvex point set S s.t. each crosses $C H(S)$ at most b times, then G admits a PSE on S with $C C \leq 2 b+1$.

$$
b=2
$$

A useful result

Theorem 1 If a graph G has a PSE on a semiconvex point set S s.t. each crosses $C H(S)$ at most b times, then G admits a PSE on S with $C C \leq 2 b+1$.

$$
b=2
$$

A useful result

Theorem 1 If a graph G has a PSE on a semiconvex point set S s.t. each crosses $C H(S)$ at most b times, then G admits a PSE on S with $C C \leq 2 b+1$.

$$
\begin{aligned}
& b=2 \\
& C C=5
\end{aligned}
$$

Another useful result

Theorem 2 [3] For every $h>0$ there exists a 3-colored biconnected outerplanar graph G_{n}, with $n \geq 79 h^{3}$, and a 3 -colored set of points S_{n} s.t. in every PSE of G_{n} on S_{n} there is at least one edge with more than h bends.

[3] Di Giacomo et al. JGAA 2008

Another useful result

Theorem 2 [3] For every $h>0$ there exists a 3-colored biconnected outerplanar graph G_{n}, with $n \geq 79 h^{3}$, and a 3 -colored set of points S_{n} s.t. in every PSE of G_{n} on S_{n} there is at least one edge with more than h bends.

[3] Di Giacomo et al. JGAA 2008

Another useful result

Theorem 2 [3] For every $h>0$ there exists a 3-colored biconnected outerplanar graph G_{n}, with $n \geq 79 h^{3}$, and a 3 -colored set of points S_{n} s.t. in every PSE of G_{n} on S_{n} there is at least one edge with more than h bends.

A 3-colored forest of 3 stars S_{n}

From a PSE of F_{n} to a PSE of G_{n}

Lemma 1 If F_{n} has a PSE on S_{n} s.t.

1. each edge crosses $C H\left(S_{n}\right)$ at most b times;
2. there exists an uncrossed triplet then G_{n} has a PSE on S_{n} such that each edge crosses $C H\left(S_{n}\right)$ at most $3 b+2$ times.
uncrossed triplet

From a PSE of F_{n} to a PSE of G_{n}

From a PSE of F_{n} to a PSE of G_{n}

From a PSE of F_{n} to a PSE of G_{n}

From a PSE of F_{n} to a PSE of G_{n}

From a PSE of F_{n} to a PSE of G_{n}

From a PSE of F_{n} to a PSE of G_{n}

From a PSE of F_{n} to a PSE of G_{n}

From a PSE of F_{n} to a PSE of G_{n}

From a PSE of F_{n} to a PSE of G_{n}

From a PSE of F_{n} to a PSE of G_{n}

From a PSE of F_{n} to a PSE of G_{n}

From a PSE of F_{n} to a PSE of G_{n}

From a PSE of F_{n} to a PSE of G_{n}

From a PSE of F_{n} to a PSE of G_{n}

From a PSE of F_{n} to a PSE of G_{n}

From a PSE of F_{n} to a PSE of G_{n}

From a PSE of F_{n} to a PSE of G_{n}

From a PSE of F_{n} to a PSE of G_{n}

From a PSE of F_{n} to a PSE of G_{n}

From a PSE of F_{n} to a PSE of G_{n}

We now add the last three edges

From a PSE of F_{n} to a PSE of G_{n}

v_{2}

We now add the last three edges

From a PSE of F_{n} to a PSE of G_{n}

v_{2}

We now add the last three edges

From a PSE of F_{n} to a PSE of G_{n}

From a PSE of F_{n} to a PSE of G_{n}

From a PSE of F_{n} to a PSE of G_{n}

From a PSE of F_{n} to a PSE of G_{n}

From a PSE of F_{n} to a PSE of G_{n}

From a PSE of F_{n} to a PSE of G_{n}

From a PSE of F_{n} to a PSE of G_{n}

From a PSE of F_{n} to a PSE of G_{n}

Putting all together

F_{n} admits a PSE with $C C \leq b$
F_{n} admits a PSE with $2 b+1$ crossings of $C H\left(S_{n}\right)$

Lm. $1 \Downarrow$
G_{n} admits a PSE with
$C C \leq 12 b+5$

Comments

Since there exists a caterpillar that is a supergraph of F_{n} for every $n, \Omega\left(n^{\frac{1}{3}}\right)$ bends may be necessary also for 3 -colored caterpillars

3-Colored PSE of paths

3-colored PSE of paths

Our result:

- Every 3 -colored path admits a PSE with CC ≤ 5 onto any 3 -colored point set.

Proof approach

Path

Point set

Proof approach

Path

Point set
Project the points on a horizontal line (spine)

Proof approach

Sequence of colors

Proof approach

Path

Sequence of colors

Compute a 2-page topological book embedding consistent with the sequence of colors and with at most 2 spine crossings per edges

Proof approach

Path

Proof approach

Path

[6] Kaufmann, Wiese JGAA 2002

Proof approach

Path

Proof approach

Path

2-page topological book embedding of paths

Every 3-colored path admits a 2-page topological book embedding with at most 2 spine crossing per edge for any given sequence of colors

2-page topological book embedding of paths

Path P

Sequence of colors σ

2-page topological book embedding of paths

Path P

Sequence of colors σ

Remove the third color

2-page topological book embedding of paths

Path P^{\prime}

Sequence of colors σ^{\prime}

2-page topological book embedding of paths

2-page topological book embedding of paths

Consider a prefix $P^{\prime \prime}$ of P^{\prime} and the corresponding prefix $\sigma^{\prime \prime}$ of σ^{\prime}
P^{\prime}

σ^{\prime}

2-page topological book embedding of paths

Consider a prefix $P^{\prime \prime}$ of P^{\prime} and the corresponding prefix $\sigma^{\prime \prime}$ of σ^{\prime}

2-page topological book embedding of paths

2-page topological book embedding of paths

If no prefix of $P^{\prime \prime}$ and $\sigma^{\prime \prime}$ are balanced we say that $P^{\prime \prime}$ and $\sigma^{\prime \prime}$ are minimally balanced

2-page topological book embedding of paths

If no prefix of $P^{\prime \prime}$ and $\sigma^{\prime \prime}$ are balanced we say that $P^{\prime \prime}$ and $\sigma^{\prime \prime}$ are minimally balanced

Minimally balanced

2-page topological book embedding of paths

We prove that P^{\prime} admits a 2-page topological book embedding consistent with σ^{\prime} s.t.

- there are at most 2 spine crossings per edge
- the first vertex is accessible from above without spine crossings
- the last vertex is accessible from below with one spine crossing

2-page topological book embedding of paths

Proof by induction on the number of vertices

2-page topological book embedding of paths

Proof by induction on the number of vertices
Base case $n=1,2$

2-page topological book embedding of paths

Proof by induction on the number of vertices
Base case $n>2$

2-page topological book embedding of paths

Proof by induction on the number of vertices
Base case $n>2$
Case 1: P^{\prime} and σ^{\prime} are minimally balanced

2-page topological book embedding of paths

Proof by induction on the number of vertices
Base case $n>2$
Case 1: P^{\prime} and σ^{\prime} are minimally balanced

2-page topological book embedding of paths

Proof by induction on the number of vertices
Base case $n>2$
Case 1: P^{\prime} and σ^{\prime} are minimally balanced

balanced

2-page topological book embedding of paths

Proof by induction on the number of vertices
Base case $n>2$
Case 1: P^{\prime} and σ^{\prime} are minimally balanced

2-page topological book embedding of paths

Proof by induction on the number of vertices
Base case $n>2$
Case 1: P^{\prime} and σ^{\prime} are minimally balanced

2-page topological book embedding of paths

Proof by induction on the number of vertices
Base case $n>2$
Case 1: P^{\prime} and σ^{\prime} are minimally balanced

2-page topological book embedding of paths

Proof by induction on the number of vertices
Base case $n>2$
Case 1: P^{\prime} and σ^{\prime} are minimally balanced

2-page topological book embedding of paths

Proof by induction on the number of vertices
Base case $n>2$
Case 2: P^{\prime} and σ^{\prime} are not minimally balanced

2-page topological book embedding of paths

Proof by induction on the number of vertices
Base case $n>2$
Case 2: P^{\prime} and σ^{\prime} are not minimally balanced

2-page topological book embedding of paths

Proof by induction on the number of vertices
Base case $n>2$
Case 2: P^{\prime} and σ^{\prime} are not minimally balanced

2-page topological book embedding of paths

Proof by induction on the number of vertices
Base case $n>2$
Case 2: P^{\prime} and σ^{\prime} are not minimally balanced

2-page topological book embedding of paths

2-page topological book embedding of paths

2-page topological book embedding of paths

2-page topological book embedding of paths

 Path P

2-page topological book embedding of paths

 Path P

2-page topological book embedding of paths

 Path P

2-page topological book embedding of paths

 Path P

2-page topological book embedding of paths

 Path P

2-page topological book embedding of paths

 Path P

2-page topological book embedding of paths

Path P

Open problems

Investigate whether the lower bound for the 3 -colored forest of stars is tight.

Open problems

Investigate whether the lower bound for the 3 -colored forest of stars is tight.

Characterize the 3 -colored caterpillars that admit a 3 -colored point-set embedding with constant curve complexity on any given set of points.

Open problems

Investigate whether the lower bound for the 3 -colored forest of stars is tight.

Characterize the 3 -colored caterpillars that admit a 3 -colored point-set embedding with constant curve complexity on any given set of points.

Study whether constant curve complexity can always by guaranteed for 4-colored paths.

Thすに, yOU

