Ordered Level Planarity, Geodesic Planarity and Bi -Monotonicity

Boris Klemz
Günter Rote

GD 2017, Boston

Ordered Level Planarity

Given: planar graph $G=(V, E)$, coordinates $p(v) \in \mathbb{R}^{2}$ for all $v \in V$

Ordered Level Planarity

Given: planar graph $G=(V, E)$, coordinates $p(v) \in \mathbb{R}^{2}$ for all $v \in V$
Want: plane drawing with ...
... vertices at prescribed positions
... y-monotone edges

Ordered Level Planarity

Given: planar graph $G=(V, E)$, coordinates $p(v) \in \mathbb{R}^{2}$ for all $v \in V$
Want: plane drawing with ...
... vertices at prescribed positions
... y-monotone edges

Ordered Level Planarity

Given: planar graph $G=(V, E)$, coordinates $p(v) \in \mathbb{R}^{2}$ for all $v \in V$
Want: plane drawing with ...
... vertices at prescribed positions
... y-monotone edges

Ordered Level Planarity

Given: planar graph $G=(V, E)$, coordinates $p(v) \in \mathbb{R}^{2}$ for all $v \in V$
Want: plane drawing with ...
... vertices at prescribed positions
... y-monotone edges

Ordered Level Planarity

Given: planar graph $G=(V, E)$, coordinates $p(v) \in \mathbb{R}^{2}$ for all $v \in V$
Want: plane drawing with ...
... vertices at prescribed positions
... y-monotone edges

Ordered Level Planarity

Given: planar graph $G=(V, E)$, coordinates $p(v) \in \mathbb{R}^{2}$ for all $v \in V$
Want: plane drawing with ...
... vertices at prescribed positions
... y-monotone edges

Ordered Level Planarity

Given: planar graph $G=(V, E)$, coordinates $p(v) \in \mathbb{R}^{2}$ for all $v \in V$
Want: plane drawing with ...
... vertices at prescribed positions
... y-monotone edges

Ordered Level Planarity

Given: planar graph $G=(V, E)$, coordinates $p(v) \in \mathbb{R}^{2}$ for all $v \in V$
Want: plane drawing with ...
... vertices at prescribed positions
... y-monotone edges

Ordered Level Planarity

Given: planar graph $G=(V, E)$, coordinates $p(v) \in \mathbb{R}^{2}$ for all $v \in V$
Want: plane drawing with ...
... vertices at prescribed positions
... y-monotone edges

Ordered Level Planarity

Given: planar graph $G=(V, E)$, coordinates $p(v) \in \mathbb{R}^{2}$ for all $v \in V$
Want: plane drawing with ...
... vertices at prescribed positions
... y-monotone edges

Ordered Level Planarity

Given: planar graph $G=(V, E)$, coordinates $p(v) \in \mathbb{R}^{2}$ for all $v \in V$
Want: plane drawing with ...
... vertices at prescribed positions
... y-monotone edges

Ordered Level Planarity

Given: planar graph $G=(V, E)$, coordinates $p(v) \in \mathbb{R}^{2}$ for all $v \in V$
Want: plane drawing with ...
... vertices at prescribed positions
... y-monotone edges

Level Planarity

 only y-coordinates (levels) are prescribed
Realizability and Orderings

The y-coordinates encode a partial order.
On each level, the x-coordinates encode a total order.

Realizability is determined by these orders.

Realizability and Orderings

The y-coordinates encode a partial order.
On each level, the x-coordinates encode a total order.

Realizability is determined by these orders.

Realizability and Orderings

The y-coordinates encode a partial order.
On each level, the x-coordinates encode a total order.

Realizability is determined by these orders.

\qquad

Realizability and Orderings

The y-coordinates encode a partial order.
On each level, the x-coordinates encode a total order.

Realizability is determined by these orders.

Realizability and Orderings

The y-coordinates encode a partial order.
On each level, the x-coordinates encode a total order.

Realizability is determined by these orders.

Realizability and Orderings

The y-coordinates encode a partial order.
On each level, the x-coordinates encode a total order.

Realizability is determined by these orders.

Realizability and Orderings

The y-coordinates encode a partial order.
On each level, the x-coordinates encode a total order.

Realizability is determined by these orders.

Realizability and Orderings

The y-coordinates encode a partial order.
On each level, the x-coordinates encode a total order.

Realizability is determined by these orders.

Realizability and Orderings

The y-coordinates encode a partial order.
On each level, the x-coordinates encode a total order.

Realizability is determined by these orders.

Realizability and Orderings

The y-coordinates encode a partial order.
On each level, the x-coordinates encode a total order.

Realizability is determined by these orders.

Realizability and Orderings

The y-coordinates encode a partial order.
On each level, the x-coordinates encode a total order.

Realizability is determined by these orders.

Not realizable:

Ordered Level Planarity

Given: planar graph $G=(V, E)$, coordinates $p(v) \in \mathbb{R}^{2}$ for all $v \in V$
Want: plane drawing with ...
... vertices at prescribed positions
... y-monotone edges

Level Planarity

 only y-coordinates (levels) are prescribed
Ordered Level Planarity

Given: planar graph $G=(V, E)$, coordinates $p(v) \in \mathbb{R}^{2}$ for all $v \in V$
Want: plane drawing with ...
... vertices at prescribed positions
... y-monotone edges

Level Planarity

only y-coordinates (levels) are prescribed Linear time [Jünger, Leipert, Mutzel'98]

Ordered Level Planarity

Given: planar graph $G=(V, E)$, coordinates $p(v) \in \mathbb{R}^{2}$ for all $v \in V$
Want: plane drawing with ...
... vertices at prescribed positions
... y-monotone edges

Level Planarity

only y-coordinates (levels) are prescribed Linear time [Jünger, Leipert, Mutzel'98]

Motivation: poset visualization

Ordered Level Planarity

Given: planar graph $G=(V, E)$, coordinates $p(v) \in \mathbb{R}^{2}$ for all $v \in V$
Want: plane drawing with ...
... vertices at prescribed positions
... y-monotone edges
NP-complete even in constrained cases

Level PLANARITY

only y-coordinates (levels) are prescribed Linear time [Jünger, Leipert, Mutzel'98]
Motivation: poset visualization

Ordered Level Planarity

Given: planar graph $G=(V, E)$, coordinates $p(v) \in \mathbb{R}^{2}$ for all $v \in V$
Want: plane drawing with ...
... vertices at prescribed positions
... y-monotone edges
NP-complete even in constrained cases
 Motivation: special case of many point-set embedding problems

Level PLANARITY

only y-coordinates (levels) are prescribed Linear time [Jünger, Leipert, Mutzel'98]
Motivation: poset visualization

Result Overview level-width $\lambda=$ max. \#vertices per level

Polytime for $\Delta_{\text {in }}=\Delta_{\text {out }}=1$ or $\lambda=1$

Result Overview level-width $\lambda=$ max. \#vertices per level

Problem Definition

Manhattan Geodesic Planarity

Given: planar graph, vertex coordinates, $\Delta \leq 4$
Want: plane drawing with rectilinear L_{1}-geodesic edges and vertices at prescribed positions

Problem Definition

Manhattan Geodesic Planarity

Given: planar graph, vertex coordinates, $\Delta \leq 4$
Want: plane drawing with rectilinear L_{1}-geodesic edges and vertices at prescribed positions

Edge representations:

Previous Work

Manhattan Geodesic Planarity is NP-hard even for matchings if drawings are restricted to a grid. [Katz, Krug, Rutter, Wolff GD'09]

Idea: space between vertices is bounded

Previous Work

Manhattan Geodesic Planarity is NP-hard even for matchings if drawings are restricted to a grid. [Katz, Krug, Rutter, Wolff GD'09]

Idea: space between vertices is bounded

$$
a_{k}=2
$$

Reduction from 3-Partition:
Given: $a_{1}, \ldots, a_{3 n} \in \mathbb{N}, \sum a_{i}=3 B$
Want: partition into n triples of sum B

Previous Work

Manhattan Geodesic Planarity is NP-hard even for matchings if drawings are restricted to a grid. [Katz, Krug, Rutter, Wolff GD'09]

Idea: space between vertices is bounded

$$
a_{k}=2
$$

Reduction from 3-Partition:
Given: $a_{1}, \ldots, a_{3 n} \in \mathbb{N}, \sum a_{i}=3 B$
Want: partition into n triples of sum B

Non-grid version:
Claim: polytime for matchings
[Katz, Krug, Rutter, Wolff GD'09]
Our result: NP-hardness for matchings
via reduction from Ordered Level Planarity

The Reduction

Ordered Level Planarity \leq_{p} Manhattan Geodesic Planarity $\Delta=\lambda=2$ matching, general position

The Reduction

Ordered Level Planarity \leq_{p} Manhattan Geodesic Planarity $\Delta=\lambda=2$ matching, general position

The Reduction

Ordered Level Planarity \leq_{p} Manhattan Geodesic Planarity $\Delta=\lambda=2$ matching, general position

The Reduction

Ordered Level Planarity \leq_{p} Manhattan Geodesic Planarity $\Delta=\lambda=2$ matching, general position

The Reduction

Ordered Level Planarity \leq_{p} Manhattan Geodesic Planarity $\Delta=\lambda=2$ matching, general position

The Reduction

Ordered Level Planarity \leq_{p} Manhattan Geodesic Planarity $\Delta=\lambda=2$ matching, general position

splitting gadget:

The Reduction

Ordered Level Planarity \leq_{p} Manhattan Geodesic Planarity $\Delta=\lambda=2$ matching, general position

splitting gadget:

The Reduction

Ordered Level Planarity \leq_{p} Manhattan Geodesic Planarity $\Delta=\lambda=2$ matching, general position

splitting gadget:

The Reduction

Ordered Level Planarity \leq_{p} Manhattan Geodesic Planarity $\Delta=\lambda=2$ matching, general position

splitting gadget:

The Reduction

Ordered Level Planarity \leq_{p} Manhattan Geodesic Planarity $\Delta=\lambda=2$ matching, general position

splitting gadget:

The Reduction

Ordered Level Planarity \leq_{p} Manhattan Geodesic Planarity $\Delta=\lambda=2$ matching, general position ?

splitting gadget:

The Reduction

Ordered Level Planarity \leq_{p} Manhattan Geodesic Planarity $\Delta=\lambda=2$ matching, general position?

The Reduction

Ordered Level Planarity \leq_{p} Manhattan Geodesic Planarity $\Delta=\lambda=2$ matching, general position?

The Reduction

Ordered Level Planarity \leq_{p} Manhattan Geodesic Planarity $\Delta=\lambda=2$ matching, general position?

The Reduction

Ordered Level Planarity \leq_{p} Manhattan Geodesic Planarity $\Delta=\lambda=2$ matching, general position ?

The Reduction

Ordered Level Planarity \leq_{p} Manhattan Geodesic Planarity $\Delta=\lambda=2$ matching, general position ?

Result Overview level-width $\lambda=$ max. \#vertices per level

Polytime for $\Delta_{\text {in }}=\Delta_{\text {out }}=1$ or $\lambda=1$

Geodesic Planarity

NP-hard even
for matchings
in general position

Result Overview level-width $\lambda=$ max. \#vertices per level

Polytime for $\Delta_{\text {in }}=\Delta_{\text {out }}=1$ or $\lambda=1$

Geodesic Planarity

NP-hard even for matchings in general position

Problem Definition

Bi-Monotonicity

Given: planar graph, vertex coordinates in general position
Want: plane drawing, xy-monotone edges, and vertices at prescribed positions

Proposed by [Fulek, Pelsmajer, Schaefer, Štefankovič'11]

Problem Definition

Bi-Monotonicity

Given: planar graph, vertex coordinates in general position
Want: plane drawing, xy-monotone edges, and vertices at prescribed positions

Proposed by [Fulek, Pelsmajer, Schaefer, Štefankovič'11]
Manhattan Geodesic Planarity \leq_{p} Bi-Monotonicity matching, general position matching

Problem Definition

Bi-Monotonicity

Given: planar graph, vertex coordinates in general position
Want: plane drawing, xy-monotone edges, and vertices at prescribed positions

Proposed by [Fulek, Pelsmajer, Schaefer, Štefankovič'11]
Manhattan Geodesic Planarity \leq_{p} Bi-Monotonicity matching, general position matching

The reduction: do nothing

Problem Definition

Bi-Monotonicity

Given: planar graph, vertex coordinates in general position
Want: plane drawing, xy-monotone edges, and vertices at prescribed positions

Proposed by [Fulek, Pelsmajer, Schaefer, Štefankovič'11]
Manhattan Geodesic Planarity \leq_{p} Bi-Monotonicity matching, general position matching

The reduction: do nothing

Result Overview level-width $\lambda=$ max. \#vertices per level

Polytime for $\Delta_{\text {in }}=\Delta_{\text {out }}=1$ or $\lambda=1$

Geodesic Planarity

Result Overview level-width $\lambda=$ max. \#vertices per level

Polytime for $\Delta_{\text {in }}=\Delta_{\text {out }}=1$ or $\lambda=1$

Geodesic Planarity

NP-hardness of Ordered Level Planarity

Proof via reduction from

Planar Monotone 3-SAT

3-Satisfiability restricted to instances that ...
... have only all-positive and all-negative clauses
... admit a contact representation with line segments and E-shapes

NP-complete [de Berg, Khosravi'12]

The Reduction

The Reduction

The Reduction

The Reduction

unique drawing

The Reduction

unique drawing clause edge

The Reduction

Idea: Ensure that either the tunnel u_{i} or $\overline{u_{i}} \overline{\text { can be used, but not both! }}$

Variable Gadgets

Ensure that for
every i either the
tunnel u_{i} or $\overline{u_{i}}$
can be used, but not both!

Variable Gadgets

Ensure that for every i either the tunnel u_{i} or $\overline{u_{i}}$ can be used, but not both!

Variable Gadgets

Ensure that for every i either the tunnel u_{i} or $\overline{u_{i}}$ can be used, but not both!

Variable Gadgets

Ensure that for every i either the tunnel u_{i} or $\overline{u_{i}}$ can be used, but not both!

Variable Gadgets

Ensure that for every i either the tunnel u_{i} or $\overline{u_{i}}$ can be used, but not both!

Variable Gadgets

Ensure that for every i either the tunnel u_{i} or $\overline{u_{i}}$ can be used, but not both!

Variable Gadgets

Ensure that for every i either the tunnel u_{i} or $\overline{u_{i}}$ can be used, but not both!

Variable Gadgets

Ensure that for every i either the tunnel u_{i} or $\overline{u_{i}}$ can be used, but not both!

Variable Gadgets

Ensure that for every i either the tunnel u_{i} or $\overline{u_{i}}$ can be used, but not both!

Variable Gadgets

Ensure that for every i either the tunnel u_{i} or $\overline{u_{i}}$ can be used, but not both!

Variable Gadgets

Ensure that for every i either the tunnel u_{i} or $\overline{u_{i}}$ can be used, but not both!

Variable Gadgets

Ensure that for every i either the tunnel u_{i} or $\overline{u_{i}}$ can be used, but not both!

Variable Gadgets

Ensure that for every i either the tunnel u_{i} or $\overline{u_{i}}$ can be used, but not both!

Variable Gadgets

Ensure that for every i either the tunnel u_{i} or $\overline{u_{i}}$ can be used, but not both!

Variable Gadgets

Ensure that for every i either the tunnel u_{i} or $\overline{u_{i}}$ can be used, but not both!

Variable Gadgets

Ensure that for every i either the tunnel u_{i} or $\overline{u_{i}}$ can be used, but not both!

Variable Gadgets

Ensure that for every i either the tunnel u_{i} or $\overline{u_{i}}$ can be used, but not both!

Variable Gadgets

Ensure that for every i either the tunnel u_{i} or $\overline{u_{i}}$ can be used, but not both!

Variable Gadgets

Ensure that for every i either the tunnel u_{i} or $\overline{u_{i}}$ can be used, but not both!

Variable Gadgets

Ensure that for every i either the tunnel u_{i} or $\overline{u_{i}}$ can be used, but not both!

Variable Gadgets

Ensure that for every i either the tunnel u_{i} or $\overline{u_{i}}$ can be used, but not both!

Reducing to Level Width $\lambda=2$

Result Overview level-width $\lambda=$ max. \#vertices per level

Polytime for $\Delta_{\text {in }}=\Delta_{\text {out }}=1$ or $\lambda=1$

Geodesic Planarity

Result Overview level-width $\lambda=$ max. \#vertices per level

Geodesic Planarity Bi-monotonicity

Clustered Level Planarity

Combination of Level Planarity and Cluster Planarity.

[Forster,Bachmaier'04]

NP-complete
[Angelini, Da Lozzo, Di Battista, Frati, Roselli'15]
Open: Complexity for flat clustering hierarchies [Angelini et al.'15]
Our result: NP-hardness for $\lambda=\Delta=2$ and 2 clusters.

Poly-time algorithms for ...
... some proper instances
... all proper instances
[Forster,Bachmaier'04]
[Angelini et al.'15]

Result Overview

Ordered Level Planarity

NP-complete even for $\Delta=\lambda=2$
Polytime for $\Delta_{\text {in }}=\Delta_{\text {out }}=1$ or $\lambda=1$

Geodesic Planarity
Bi-monotonicity

Result Overview

Ordered Level Planarity

Result Overview

Ordered Level Planarity

NP-complete even for $\Delta=\lambda=2$
Polytime for $\Delta_{\text {in }}=\Delta_{\text {out }}=1$ or $\lambda=1$
[Brückner, Rutter'17]

Constrained
Level Planarity
NP-complete
for $\Delta=\lambda=2$
and total orders

Clustered
Level Planarity

NP-complete even for $\Delta=\lambda=2$ and only 2 clusters

Geodesic Planarity

NP-hard even for matching

NP-hard even for matching in general position

Result Overview

Ordered Level Planarity

Constrained Level Planarity
NP-complete even for $\Delta=\lambda=2$
Polytime for $\Delta_{\text {in }}=\Delta_{\text {out }}=1$ or $\lambda=1$

NP-complete for $\Delta=\lambda=2$
 and total orders

T-Level Planarity

Clustered
Level Planarity

NP-complete even for $\Delta=\lambda=2$ and only 2 clusters

Geodesic Planarity

NP-hard even for matchings in general position

Connectivity

NP-hardness of Ordered Level Planarity also holds for connected instances with $\Delta=4$ and $\lambda=2$

\longmapsto

Connectivity

NP-hardness of Ordered Level Planarity also holds for connected instances with $\Delta=4$ and $\lambda=2$

\longmapsto

Connectivity

NP-hardness of Ordered Level Planarity also holds for connected instances with $\Delta=4$ and $\lambda=2$

Open: Complexity of Manhattan Geodesic Planarity for connected instances

Problem:

\mapsto ?!
$\Delta_{\text {out }} \geq 3$

Clustered Level Planarity

Clustered Level Planarity

Clustered Level Planarity

Result Overview level-width $\lambda=\#$ vertices per level

