Ordered Level Planarity, Geodesic Planarity and Bi-Monotonicity

<u>Boris Klemz</u> Günter Rote

GD 2017, Boston

Given: planar graph G = (V, E), coordinates $p(v) \in \mathbb{R}^2$ for all $v \in V$

Given: planar graph G = (V, E), coordinates $p(v) \in \mathbb{R}^2$ for all $v \in V$

- ... vertices at prescribed positions
- ... *y*-monotone edges

Given: planar graph G = (V, E), coordinates $p(v) \in \mathbb{R}^2$ for all $v \in V$

- ... vertices at prescribed positions
- ... *y*-monotone edges

Given: planar graph G = (V, E), coordinates $p(v) \in \mathbb{R}^2$ for all $v \in V$

- ... vertices at prescribed positions
- ... *y*-monotone edges

Given: planar graph G = (V, E), coordinates $p(v) \in \mathbb{R}^2$ for all $v \in V$

- ... vertices at prescribed positions
- ... *y*-monotone edges

Given: planar graph G = (V, E), coordinates $p(v) \in \mathbb{R}^2$ for all $v \in V$

- ... vertices at prescribed positions
- ... *y*-monotone edges

Given: planar graph G = (V, E), coordinates $p(v) \in \mathbb{R}^2$ for all $v \in V$

- ... vertices at prescribed positions
- ... *y*-monotone edges

Given: planar graph G = (V, E), coordinates $p(v) \in \mathbb{R}^2$ for all $v \in V$

- ... vertices at prescribed positions
- ... *y*-monotone edges

Given: planar graph G = (V, E), coordinates $p(v) \in \mathbb{R}^2$ for all $v \in V$

- ... vertices at prescribed positions
- ... *y*-monotone edges

Given: planar graph G = (V, E), coordinates $p(v) \in \mathbb{R}^2$ for all $v \in V$

- ... vertices at prescribed positions
- ... *y*-monotone edges

Given: planar graph G = (V, E), coordinates $p(v) \in \mathbb{R}^2$ for all $v \in V$

- ... vertices at prescribed positions
- ... *y*-monotone edges

Given: planar graph G = (V, E), coordinates $p(v) \in \mathbb{R}^2$ for all $v \in V$

- ... vertices at prescribed positions
- ... *y*-monotone edges

Given: planar graph G = (V, E), coordinates $p(v) \in \mathbb{R}^2$ for all $v \in V$

Want: plane drawing with ...

- ... vertices at prescribed positions
- ... *y*-monotone edges

Level Planarity

only y-coordinates (levels) are prescribed

The y-coordinates encode a partial order.

On each level, the x-coordinates encode a total order.

The y-coordinates encode a partial order.

On each level, the x-coordinates encode a total order.

The y-coordinates encode a partial order.

On each level, the x-coordinates encode a total order.

The y-coordinates encode a partial order.

On each level, the x-coordinates encode a total order.

The y-coordinates encode a partial order.

On each level, the x-coordinates encode a total order.

The y-coordinates encode a partial order.

On each level, the x-coordinates encode a total order.

The y-coordinates encode a partial order.

On each level, the x-coordinates encode a total order.

The y-coordinates encode a partial order.

On each level, the x-coordinates encode a total order.

The y-coordinates encode a partial order.

On each level, the x-coordinates encode a total order.

The y-coordinates encode a partial order.

On each level, the x-coordinates encode a total order.

The y-coordinates encode a partial order.

On each level, the x-coordinates encode a total order.

Realizability is determined by these orders.

Not realizable:

Given: planar graph G = (V, E), coordinates $p(v) \in \mathbb{R}^2$ for all $v \in V$

Want: plane drawing with ...

- ... vertices at prescribed positions
- ... *y*-monotone edges

Level Planarity

only y-coordinates (levels) are prescribed

Given: planar graph G = (V, E), coordinates $p(v) \in \mathbb{R}^2$ for all $v \in V$

Want: plane drawing with ...

- ... vertices at prescribed positions
- ... *y*-monotone edges

Level Planarity

only y-coordinates (levels) are prescribed

Linear time [Jünger, Leipert, Mutzel'98]

Given: planar graph G = (V, E), coordinates $p(v) \in \mathbb{R}^2$ for all $v \in V$

Want: plane drawing with ...

- ... vertices at prescribed positions
- ... *y*-monotone edges

LEVEL PLANARITY

only y-coordinates (levels) are prescribed

Linear time [Jünger, Leipert, Mutzel'98]

Motivation: poset visualization

Given: planar graph G = (V, E), coordinates $p(v) \in \mathbb{R}^2$ for all $v \in V$

Want: plane drawing with ...

- ... vertices at prescribed positions
- ... *y*-monotone edges

NP-complete even in constrained cases

LEVEL PLANARITY only y-coordinates (levels) are prescribed Linear time [Jünger, Leipert, Mutzel'98] Motivation: poset visualization

Given: planar graph G = (V, E), coordinates $p(v) \in \mathbb{R}^2$ for all $v \in V$

Want: plane drawing with ...

- ... vertices at prescribed positions
- \dots *y*-monotone edges

NP-complete even in constrained cases

Motivation: special case of many point-set embedding problems

Level Planarity

only *y*-coordinates (levels) are prescribed Linear time [Jünger, Leipert, Mutzel'98] Motivation: poset visualization

Result Overview level-width $\lambda = \max$. #vertices per level

ORDERED LEVEL PLANARITY NP-complete even for $\Delta = \lambda = 2$

Polytime for
$$\Delta_{in} = \Delta_{out} = 1$$
 or $\lambda = 1$

Result Overview

level-width $\lambda = \max$. #vertices per level

Ordered Level Planarity

Boris Klemz & Günter Rote

Ordered Level Planarity, Geodesic Planarity and Bi-Monotonicity

Problem Definition

MANHATTAN GEODESIC PLANARITY

Given: planar graph, vertex coordinates, $\Delta \leq 4$

Want: plane drawing with rectilinear L_1 -geodesic edges and vertices at prescribed positions

Problem Definition

MANHATTAN GEODESIC PLANARITY

Given: planar graph, vertex coordinates, $\Delta \leq 4$

Want: plane drawing with rectilinear L_1 -geodesic edges and vertices at prescribed positions

Edge representations:

Previous Work

MANHATTAN GEODESIC PLANARITY is NP-hard even for matchings if drawings are restricted to a grid. [Katz, Krug, Rutter, Wolff GD'09]

Idea: space between vertices is bounded

Previous Work

MANHATTAN GEODESIC PLANARITY is NP-hard even for matchings if drawings are restricted to a grid. [Katz, Krug, Rutter, Wolff GD'09]

Idea: space between vertices is bounded

Reduction from 3-PARTITION:

Given: $a_1, ..., a_{3n} \in \mathbb{N}$, $\sum a_i = 3B$ Want: partition into n triples of sum B

Previous Work

MANHATTAN GEODESIC PLANARITY is NP-hard even for matchings if drawings are restricted to a grid. [Katz, Krug, Rutter, Wolff GD'09]

Idea: space between vertices is bounded

Reduction from 3-PARTITION:

Given: $a_1, \ldots, a_{3n} \in \mathbb{N}$, $\sum a_i = 3B$ Want: partition into n triples of sum B

Non-grid version:

Claim: polytime for matchings

Our result: NP-hardness for matchings

via reduction from ORDERED LEVEL PLANARITY

Boris Klemz & Günter Rote

[Katz, Krug, Rutter, Wolff GD'09]

Boris Klemz & Günter Rote

Ordered Level Planarity, Geodesic Planarity and Bi-Monotonicity

Boris Klemz & Günter Rote

Ordered Level Planarity, Geodesic Planarity and Bi-Monotonicity

Boris Klemz & Günter Rote

Ordered Level Planarity, Geodesic Planarity and Bi-Monotonicity

Result Overview level-width $\lambda = \max$. #vertices per level

ORDERED LEVEL PLANARITY

NP-complete even for $\Delta = \dot{\lambda} = 2$ Polytime for $\Delta_{in} = \Delta_{out} = 1$ or $\lambda = 1$ GEODESIC PLANARITY NP-hard even for matchings

in general position

Boris Klemz & Günter Rote

Ordered Level Planarity, Geodesic Planarity and Bi-Monotonicity

Result Overview

level-width $\lambda = \max$. #vertices per level

Ordered Level Planarity

Boris Klemz & Günter Rote

Ordered Level Planarity, Geodesic Planarity and Bi-Monotonicity

BI-MONOTONICITY

Given: planar graph, vertex coordinates in general position

Want: plane drawing, xy-monotone edges, and vertices at prescribed positions

Proposed by [Fulek, Pelsmajer, Schaefer, Štefankovič'11]

BI-MONOTONICITY

Given: planar graph, vertex coordinates in general position

Want: plane drawing, xy-monotone edges, and vertices at prescribed positions

Proposed by [Fulek, Pelsmajer, Schaefer, Štefankovič'11]

BI-MONOTONICITY

Given: planar graph, vertex coordinates in general position

Want: plane drawing, xy-monotone edges, and vertices at prescribed positions

Proposed by [Fulek, Pelsmajer, Schaefer, Štefankovič'11]

The reduction: do nothing

BI-MONOTONICITY

Given: planar graph, vertex coordinates in general position

Want: plane drawing, xy-monotone edges, and vertices at prescribed positions

Proposed by [Fulek, Pelsmajer, Schaefer, Štefankovič'11]

The reduction: do nothing

Result Overview

level-width $\lambda = \max$. #vertices per level

Ordered Level Planarity

Boris Klemz & Günter Rote

Ordered Level Planarity, Geodesic Planarity and Bi-Monotonicity

Boris Klemz & Günter Rote

Ordered Level Planarity, Geodesic Planarity and Bi-Monotonicity

$\mathsf{NP}\text{-hardness}$ of $\mathsf{O}\texttt{RDERED}$ Level Planarity

Proof via reduction from

Planar Monotone 3-SAT

- 3-Satisfiability restricted to instances that \ldots
- ... have only all-positive and all-negative clauses
- ... admit a contact representation with line segments and E-shapes

NP-complete [de Berg, Khosravi'12]

unique drawing

unique drawing

clause edge

clause edge

The Reduction

unique drawing clause edge

The Reduction

unique drawing clause edge

Boris Klemz & Günter Rote

The Reduction

Boris Klemz & Günter Rote

Ensure that for every i either the tunnel u_i or $\overline{u_i}$ can be used, but not both!

Ensure that for every i either the tunnel u_i or $\overline{u_i}$ can be used, but not both!

Boris Klemz & Günter Rote

Ensure that for every i either the tunnel u_i or $\overline{u_i}$ can be used, but not both!

Ensure that for every i either the tunnel u_i or $\overline{u_i}$ can be used, but not both!

Boris Klemz & Günter Rote

Ensure that for every i either the tunnel u_i or $\overline{u_i}$ can be used, but not both!

Ordered Level Planarity, Geodesic Planarity and Bi-Monotonicity

Ordered Level Planarity, Geodesic Planarity and Bi-Monotonicity

Reducing to Level Width $\lambda=2$

level-width $\lambda = \max$. #vertices per level

Ordered Level Planarity

Boris Klemz & Günter Rote

Clustered Level Planarity

Combination of LEVEL PLANARITY and CLUSTER PLANARITY.

[Forster, Bachmaier'04]

Poly-time algorithms for ...

- ... some proper instances
- ... all proper instances

[Forster,Bachmaier'04]

[Angelini et al.'15]

Ordered Level Planarity

Boris Klemz & Günter Rote

Boris Klemz & Günter Rote

Boris Klemz & Günter Rote

Boris Klemz & Günter Rote

Connectivity

NP-hardness of ORDERED LEVEL PLANARITY also holds for connected instances with $\Delta=4$ and $\lambda=2$

Connectivity

NP-hardness of ORDERED LEVEL PLANARITY also holds for connected instances with $\Delta=4$ and $\lambda=2$

Connectivity

NP-hardness of ORDERED LEVEL PLANARITY also holds for connected instances with $\Delta=4$ and $\lambda=2$

Open: Complexity of MANHATTAN GEODESIC PLANARITY for connected instances

?! Problem: $\begin{array}{c} \mapsto & ?\\ \Delta_{out} \geq 3 \end{array}$ $\Delta_{out} \le 2$

Boris Klemz & Günter Rote

Clustered Level Planarity

Clustered Level Planarity

Clustered Level Planarity

Boris Klemz & Günter Rote

Ordered Level Planarity, Geodesic Planarity and Bi-Monotonicity