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Geographic networks
http://www.businessinsider.com/bp-map-world-oil-trade-movements-2014-2015-6

geant network map

Topology map of GÉANT (pan-European
research and education network) [geant.org]

Gas trade map [BP Statistical Review of World Energy ’17]
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but can be “anywhere” inside!

Algorithmic question:

Given a geographic network,
can it be drawn without crossings?
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Given a geographic network, can it be drawn without crossings?

Our problem

← unit vertical segments• Regions

• Curves to draw edges

• Type of graph

Need to precise:

← matching

← drawn inside convex hulls of
edge vertical segments (tubes)
← three ways to draw edges
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Three ways to draw edges inside tubes:
straight-line segment (x-)monotone paths arbitrary paths

Recall: endpoints can be anywhere on the vertical line segments
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Our results

straight-line paths (x-)monotone paths arbitrary paths

NP-complete Polynomial
Polynomial under
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[Löffler, 2011]: also hard when regions are homothets of some arbitrary shape

• General graphs when regions are unit squares [Angelini et al., 2014]

stress only difference is unit-length

- Force-directed approach for general problem [Abellanas et al., 2005]



Related work

- Straight-line case shown NP-hard for:

• Cycle graphs when regions are vertical segments [Löffler, 2011]

• Matchings when regions are vertical segments [Aloupis et al., 2015; Verbeek, 2008]

[Löffler, 2011]: also hard when regions are homothets of some arbitrary shape

• General graphs when regions are unit squares [Angelini et al., 2014]

- Several other related problems:

• Fitting planar graphs to planar maps

• c-planarity / ordered-level planarity

• Manhattan geodesic planarity

[Alam et al., 2015]

[Feng et al., 1995,
Klemz and Rote, 2017]

[Katz et al., 2009]

stress only difference is unit-length

- Force-directed approach for general problem [Abellanas et al., 2005]

• Non-crossing connectors in the plane [Kratochv́ıl and Ueckerdt, 2013]



Our results

straight line paths (x-)monotone paths arbitrary paths

NP-complete Polynomial
Polynomial under

certain assumptions
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How can two tubes intersect?

full crossing

(no solution)

single intersection double intersection

induces vertical order
between paths

e.g., blue path is
“above” red

we can define an
order graph

→
vertical order is a partial order
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Order graph

Order graphTubes

B

R

P

G

B R

P G

Any finite partial order can be
extended to a total order
using, for example,
topological sort

A topological ordering is
possible iff the graph has no
directed cycles

There is a solution if and only if the
order graph has no directed cycles

Assuming no full crossing!
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Drawing the tubes in order

Order graphTubes

B

R

P

G

B R

P G

If no directed cycles:

• extract total order

• follow that order, drawing paths
as low as possible

e.g.,

If no cycles, the order
graph give a prtial
order, which can be
extended to a total
order (e.g., with
topological sort)

B R P G
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Arbitrary paths

(no solution)

Now, some cycles of directed edges
can be solved:

B

R

G
not ALL cycles can be solved, of course

Related problem: Non-crossing connectors [Kratochv́ıl and Ueckerdt, 2013]

They prove: If the regions are pseudo-disks,
there is always a solution
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Are our tubes pseudo-disks?
Recall what pseudo-disk means

single intersection

pseudo-disks!

single intersection

not pseudo-disks

pseudo-disks!

not pseudo-disks

double intersection

can’t cut off ears

We assume there
are no double
intersections
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If no double intersections
Algorithm: while there is pair of tubes not pseudo-disks, cut off ear.

Result: set of pruned tubes that are pseudo-disks

... then there is always a solution?

full crossing created!
no solution

⇒ original instance had
no solution either

If there are no double intersections, one can determine if all the tubes
can be connected using arbitrary paths in polynomial time
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Summary
straight-line paths (x-)monotone paths arbitrary paths

NP-complete Polynomial
Polynomial if no

double intersections

Is it also polynomial if there are double intersections?

We conjecture the answer is Yes
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Straight line paths

Given n tubes defined by unit vertical segments, deciding if the tubes
can be connected with straight line segments is NP-Complete

We can now propagate
truth values...

...as well as representing
negations and clauses, so
that the reduction works


