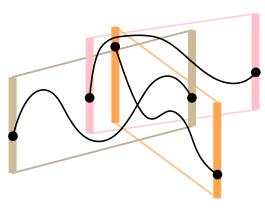
Non-crossing paths with geographic constraints

Rodrigo I. Silveira

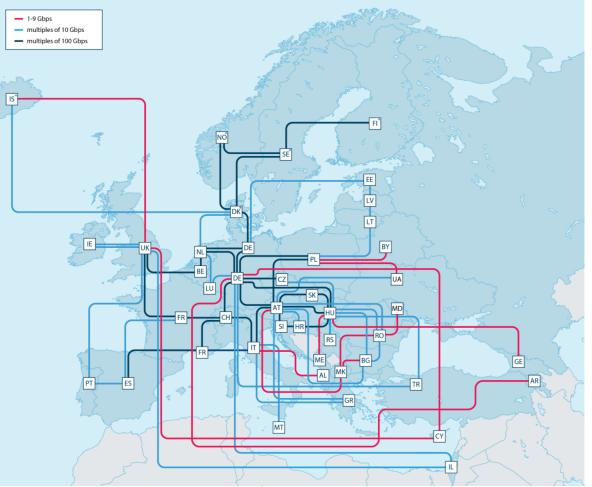
UPC Barcelona



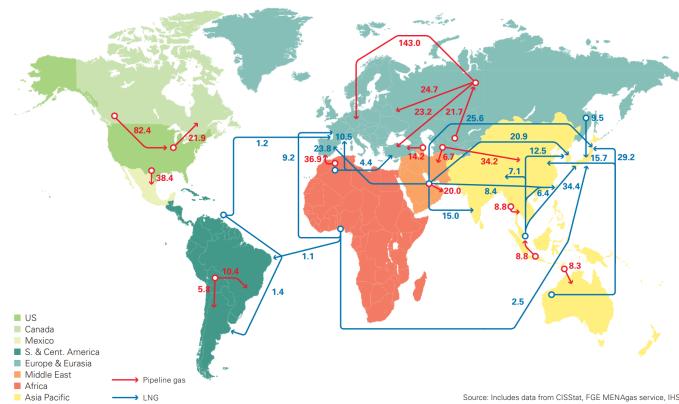
Bettina Speckmann Kevin Verbeek

TU Eindhoven

Geographic networks

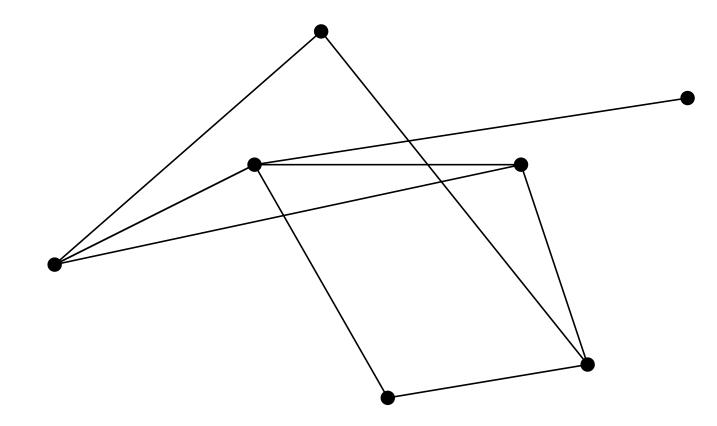


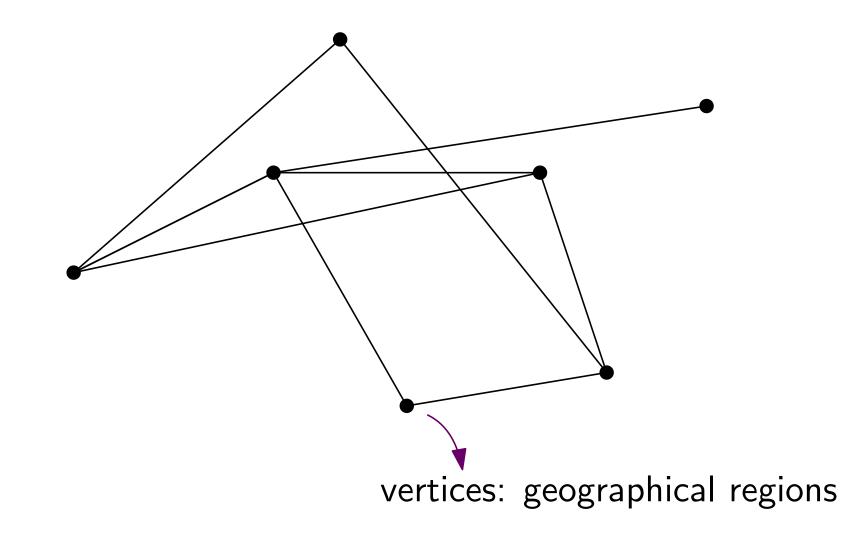
Major trade movements 2016 Trade flows worldwide (billion cubic metres)

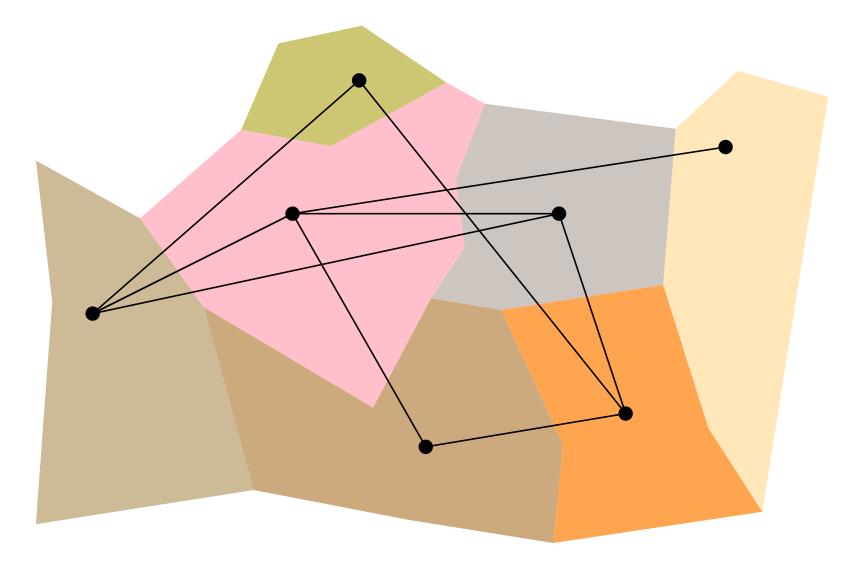


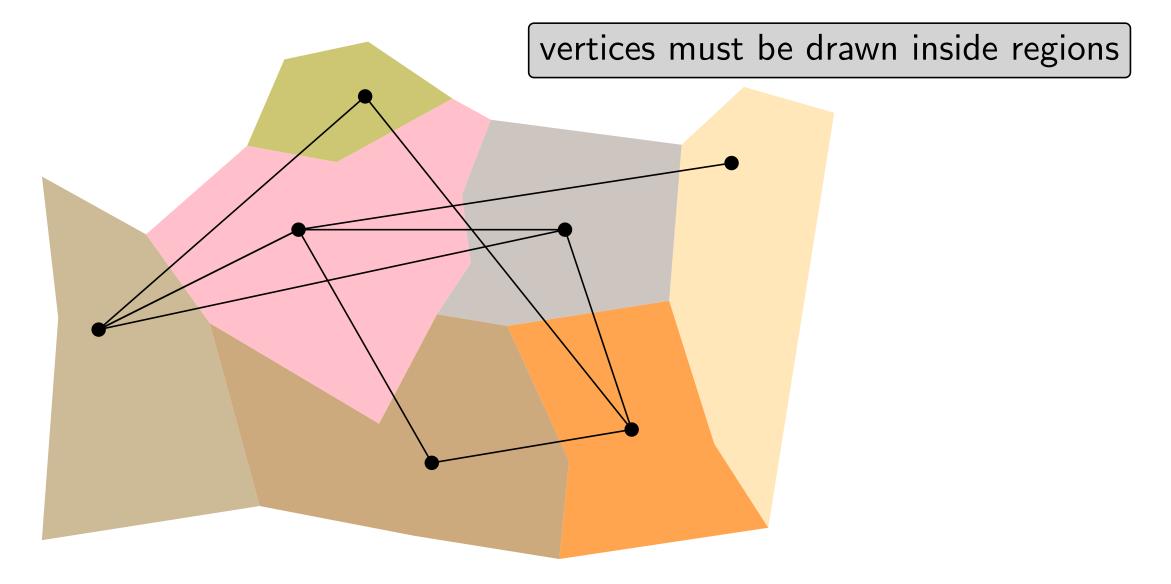
Gas trade map [BP Statistical Review of World Energy '17]

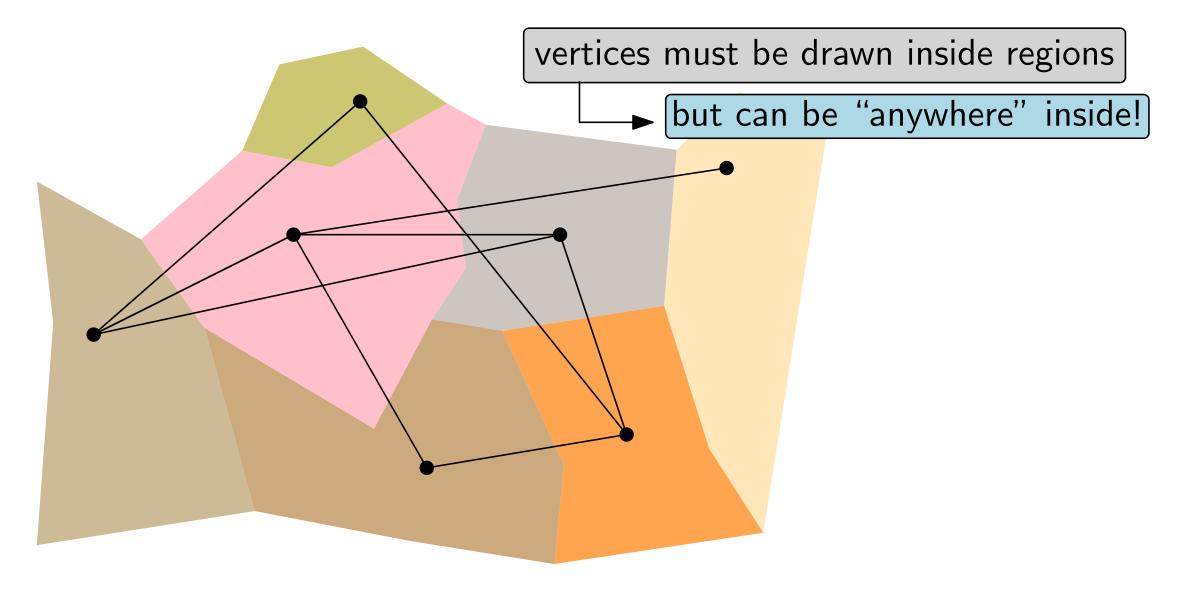
Topology map of GÉANT (pan-European research and education network) [geant.org]

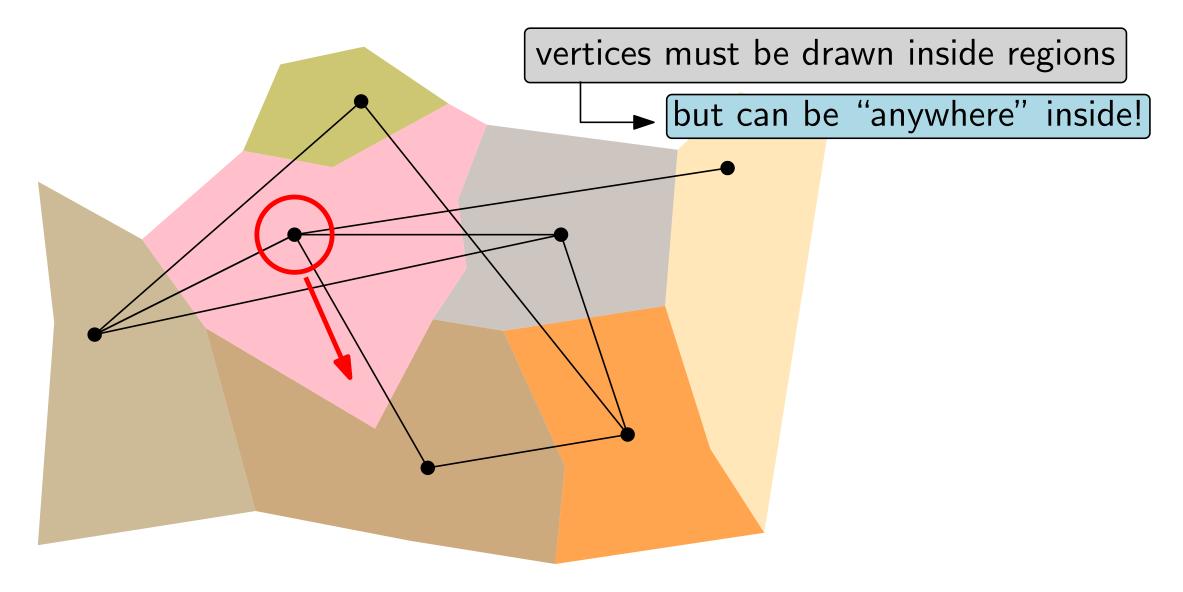


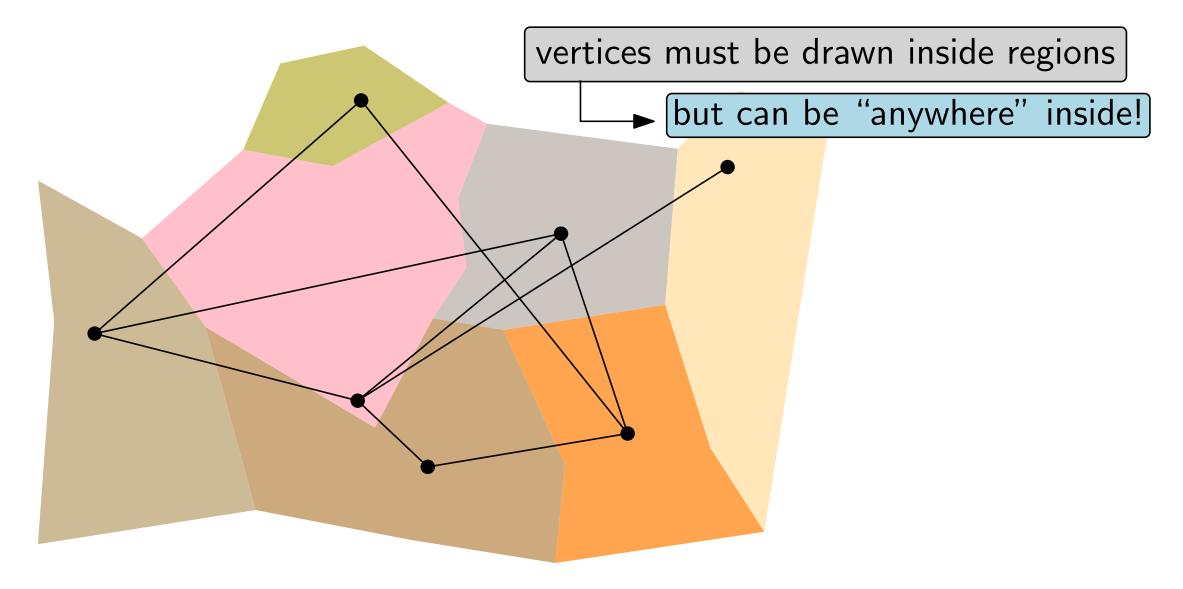


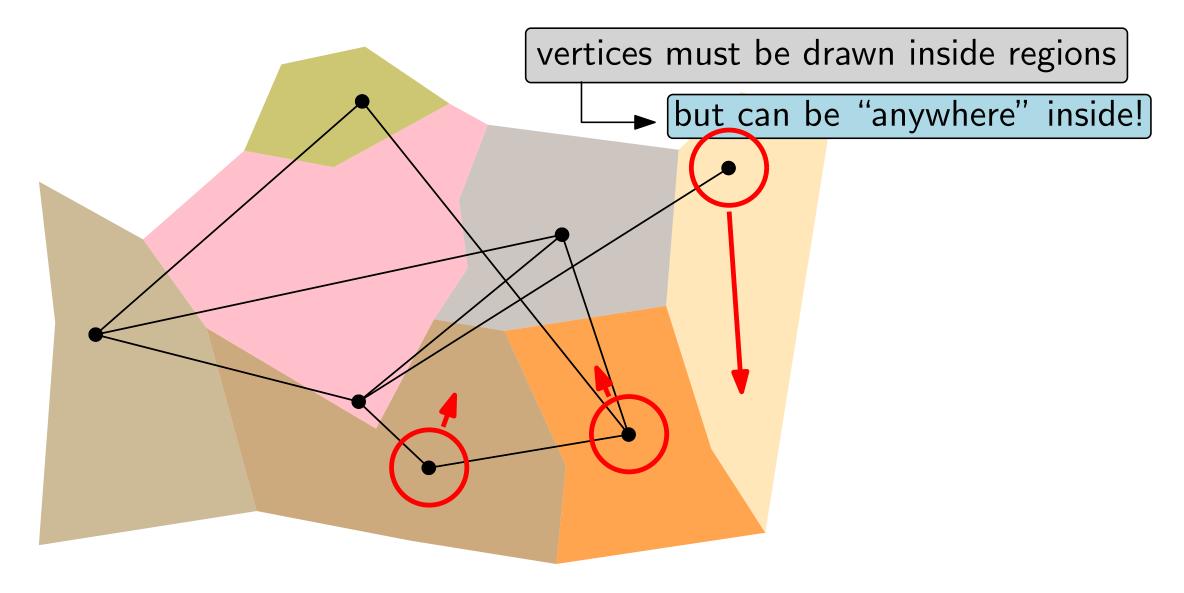


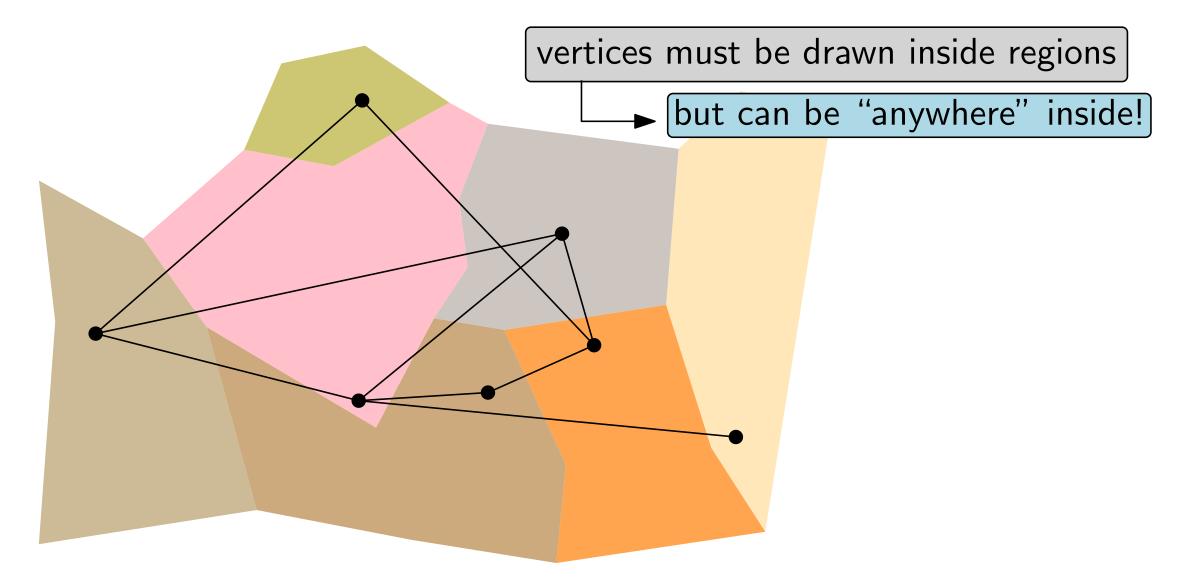


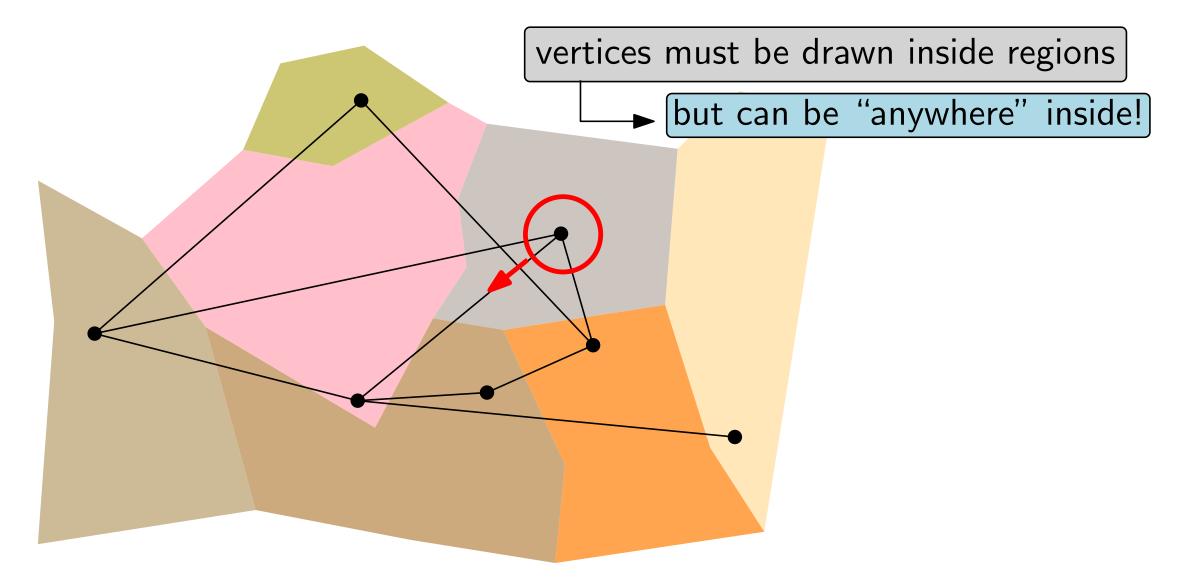


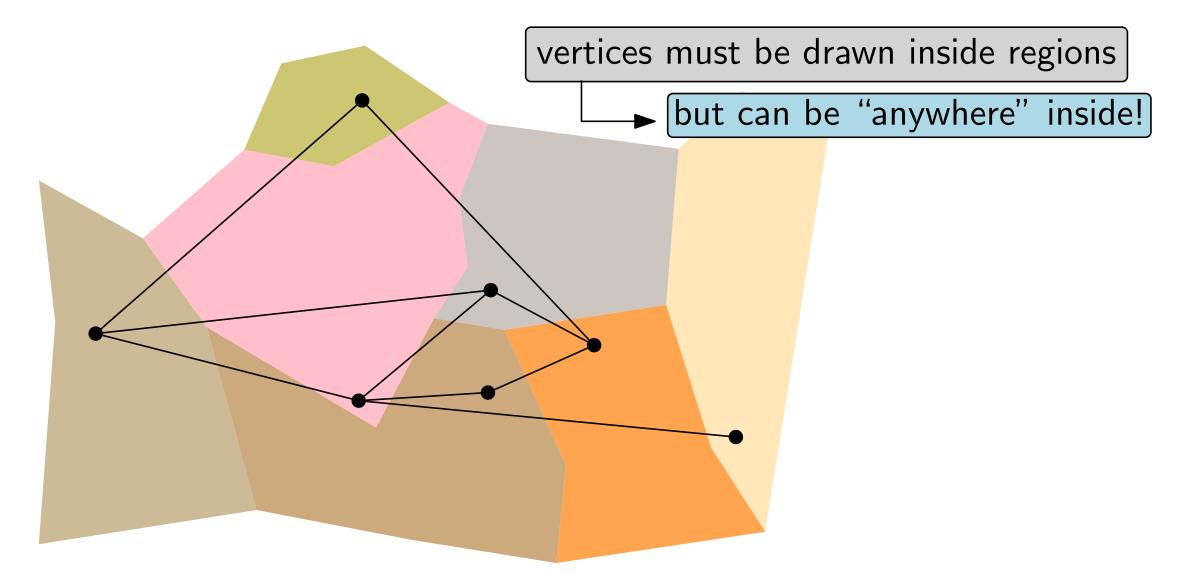


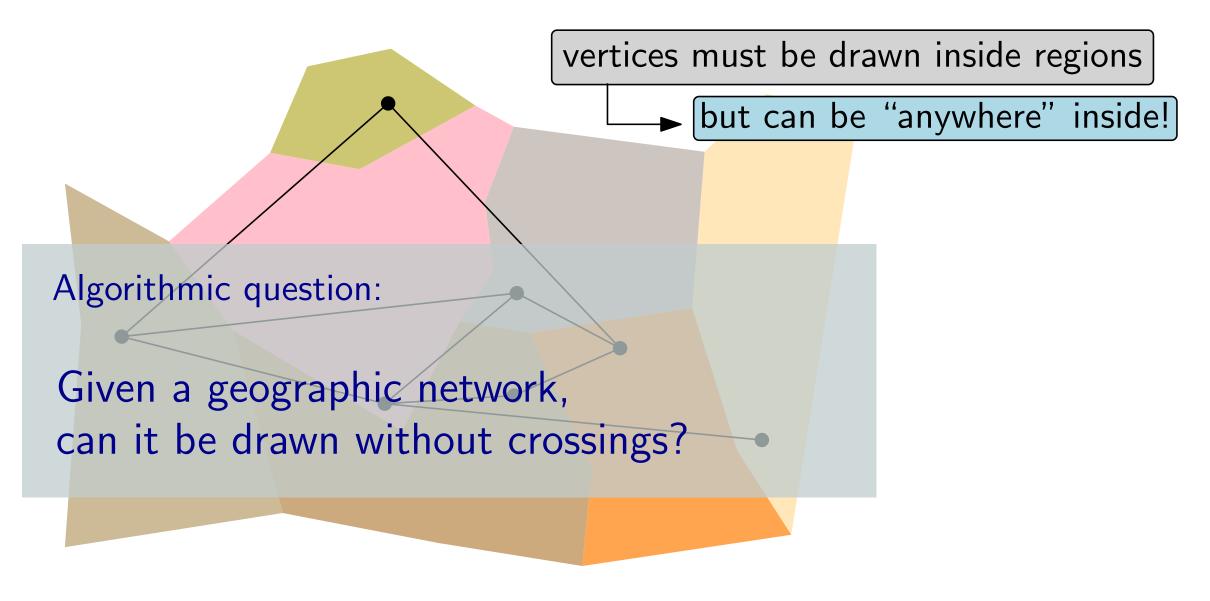






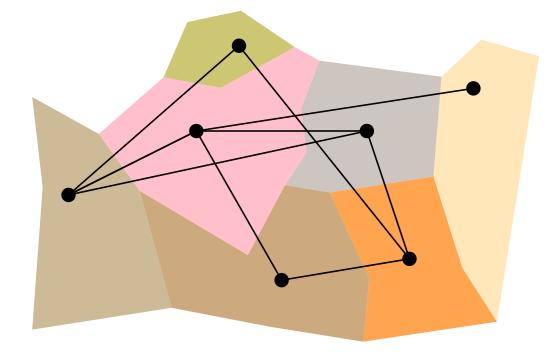






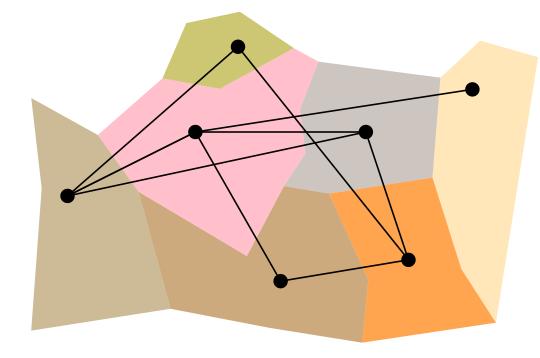
The big problem

Given a geographic network, can it be drawn without crossings?



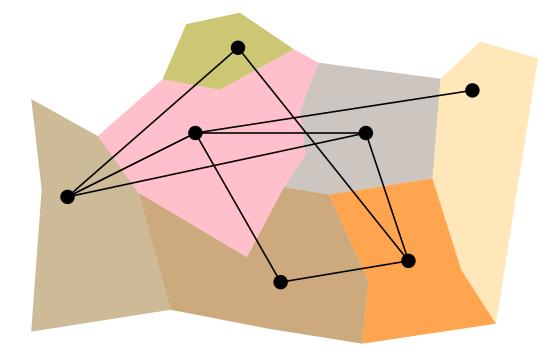
The big problem

Given a geographic network, can it be drawn without crossings?



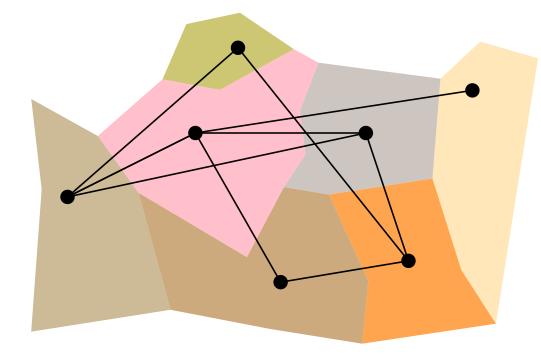
- Type of graph
- Regions
- Curves to draw edges

Given a geographic network, can it be drawn without crossings?



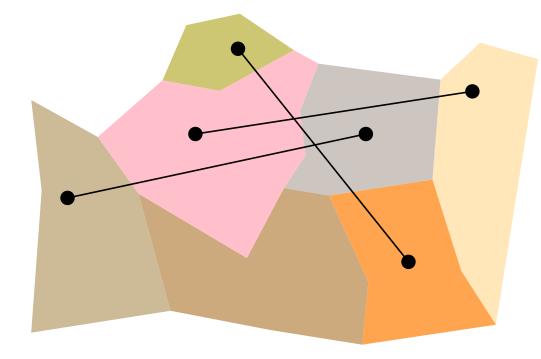
- Type of graph
- Regions
- Curves to draw edges

Given a geographic network, can it be drawn without crossings?



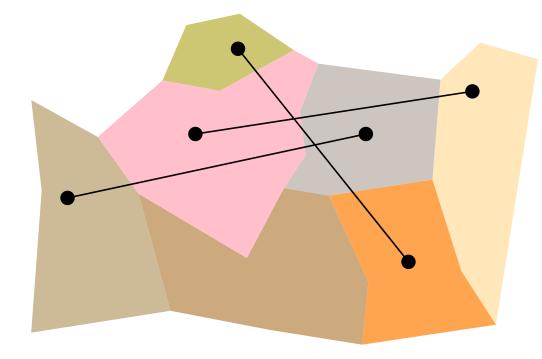
- Type of graph \leftarrow matching
- Regions
- Curves to draw edges

Given a geographic network, can it be drawn without crossings?



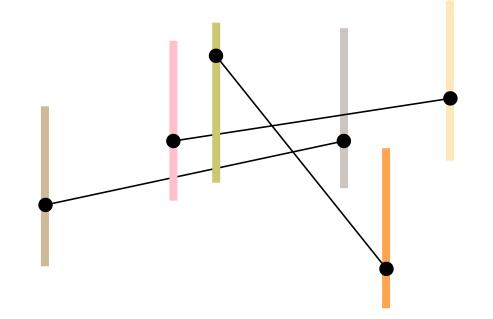
- Type of graph \leftarrow matching
- Regions
- Curves to draw edges

Given a geographic network, can it be drawn without crossings?



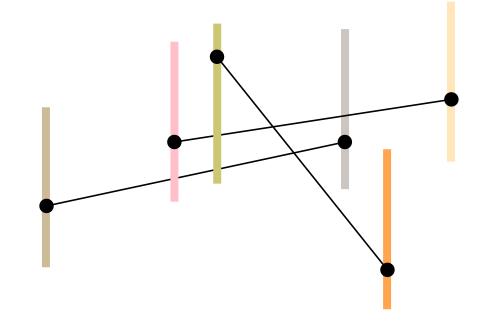
- Type of graph ← matching
- Regions <-- unit vertical segments
- Curves to draw edges

Given a geographic network, can it be drawn without crossings?



- Type of graph \leftarrow matching
- Regions <-- unit vertical segments
- Curves to draw edges

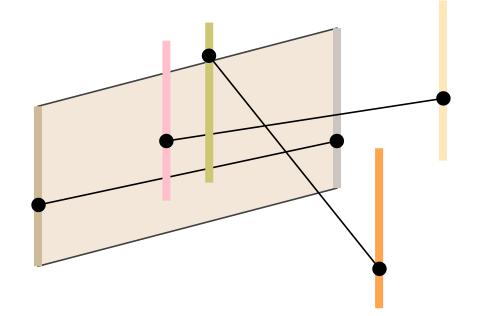
Given a geographic network, can it be drawn without crossings?



- Type of graph ← matching
- Curves to draw edges

 drawn inside convex hulls of edge vertical segments (*tubes*)

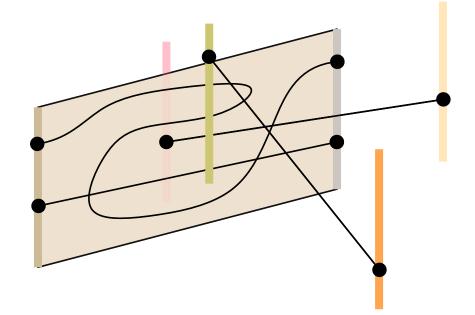
Given a geographic network, can it be drawn without crossings?



- Type of graph ← matching
- Curves to draw edges

 drawn inside convex hulls of edge vertical segments (tubes)

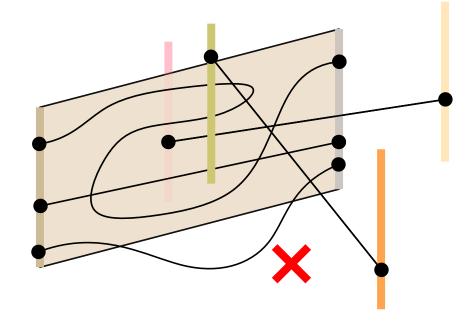
Given a geographic network, can it be drawn without crossings?



- Type of graph ← matching
- Curves to draw edges

 drawn inside convex hulls of edge vertical segments (tubes)

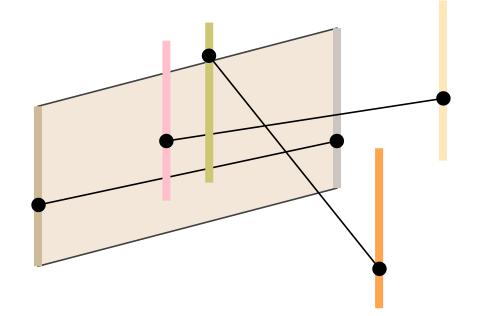
Given a geographic network, can it be drawn without crossings?



- Type of graph ← matching
- Curves to draw edges

 drawn inside convex hulls of edge vertical segments (tubes)

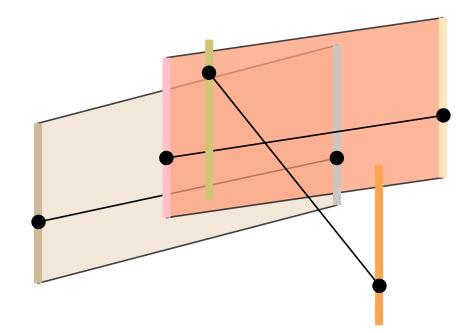
Given a geographic network, can it be drawn without crossings?



- Type of graph ← matching
- Curves to draw edges

 drawn inside convex hulls of edge vertical segments (tubes)

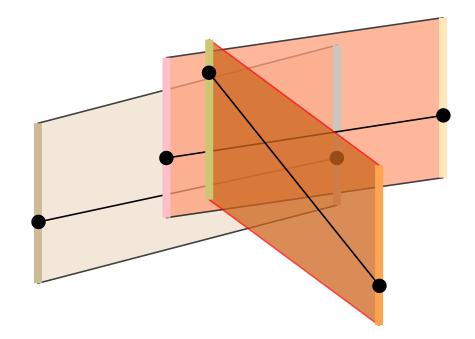
Given a geographic network, can it be drawn without crossings?



- Type of graph ← matching
- Curves to draw edges

 drawn inside convex hulls of edge vertical segments (tubes)

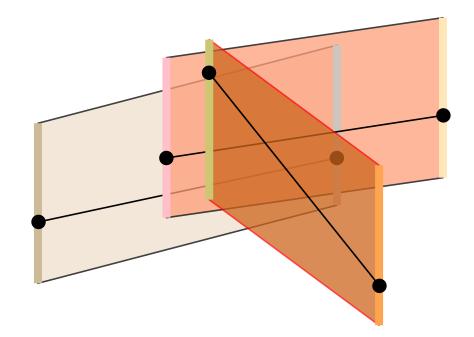
Given a geographic network, can it be drawn without crossings?



- Type of graph ← matching
- Curves to draw edges

 drawn inside convex hulls of edge vertical segments (tubes)

Given a geographic network, can it be drawn without crossings?

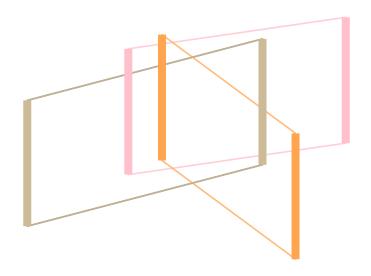


- Type of graph ← matching
- Curves to draw edges

 drawn inside convex hulls of edge vertical segments (*tubes*)
 three ways to draw edges

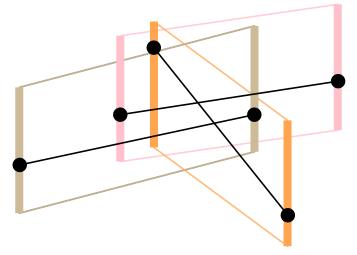
Given a matching, where the endpoint of each edge must lie on a unit vertical segment, can it be drawn without crossings?

Given a matching, where the endpoint of each edge must lie on a unit vertical segment, can it be drawn without crossings? Three ways to draw edges inside tubes:



Given a matching, where the endpoint of each edge must lie on a unit vertical segment, can it be drawn without crossings? Three ways to draw edges inside tubes:

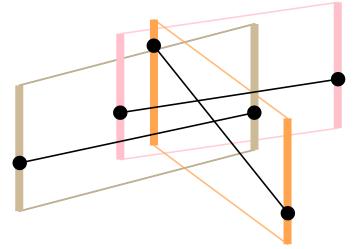
straight-line segment

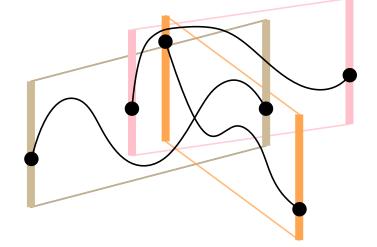


Given a matching, where the endpoint of each edge must lie on a unit vertical segment, can it be drawn without crossings?

Three ways to draw edges inside tubes:

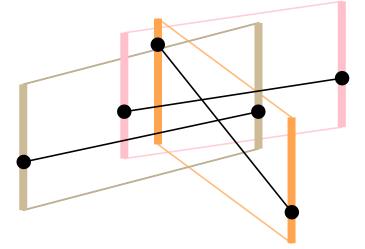
straight-line segment (x-)monotone paths

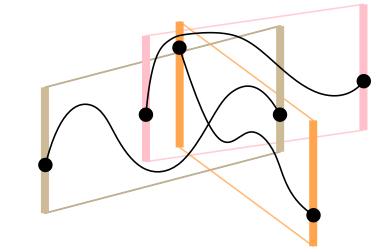




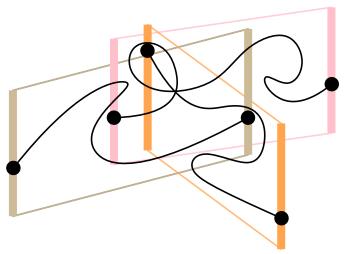
Given a matching, where the endpoint of each edge must lie on a unit vertical segment, can it be drawn without crossings? Three ways to draw edges inside tubes:

straight-line segment (x-)monotone paths



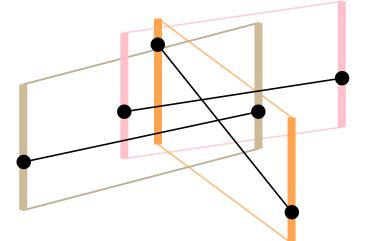


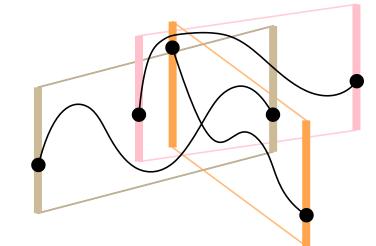
arbitrary paths



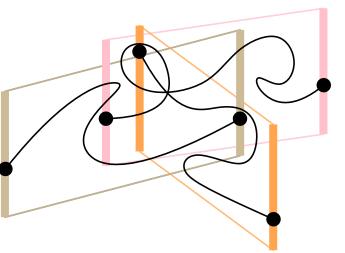
Given a matching, where the endpoint of each edge must lie on a unit vertical segment, can it be drawn without crossings? Three ways to draw edges inside tubes:

straight-line segment (x-)monotone paths

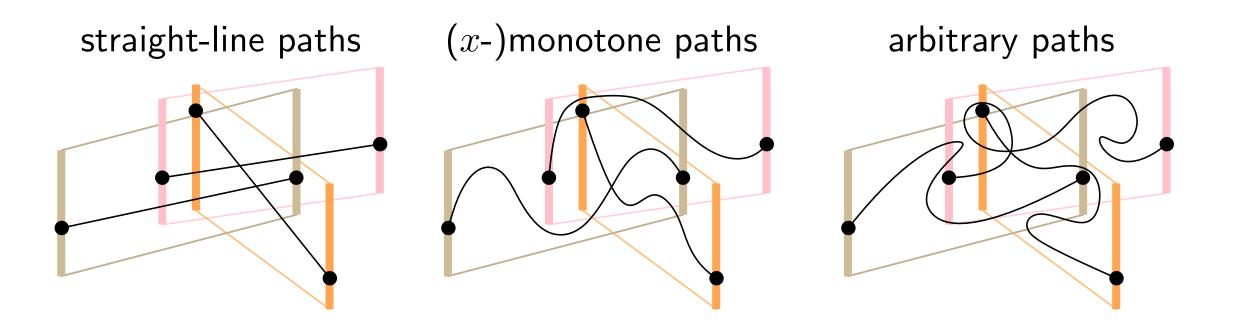


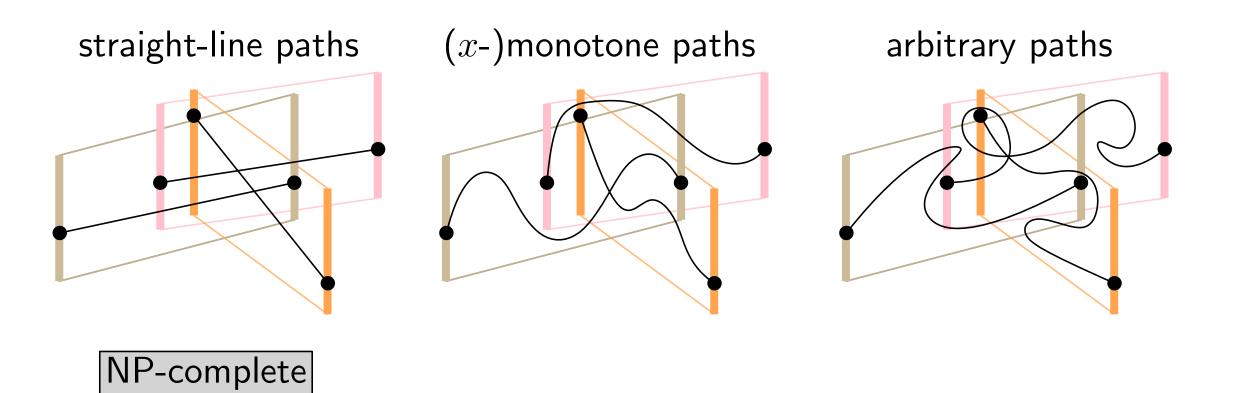


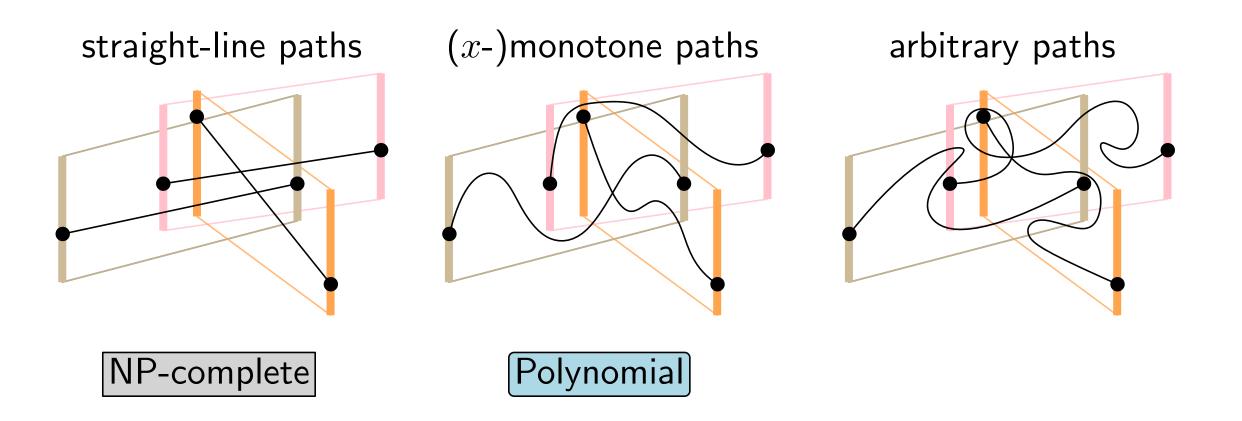
arbitrary paths

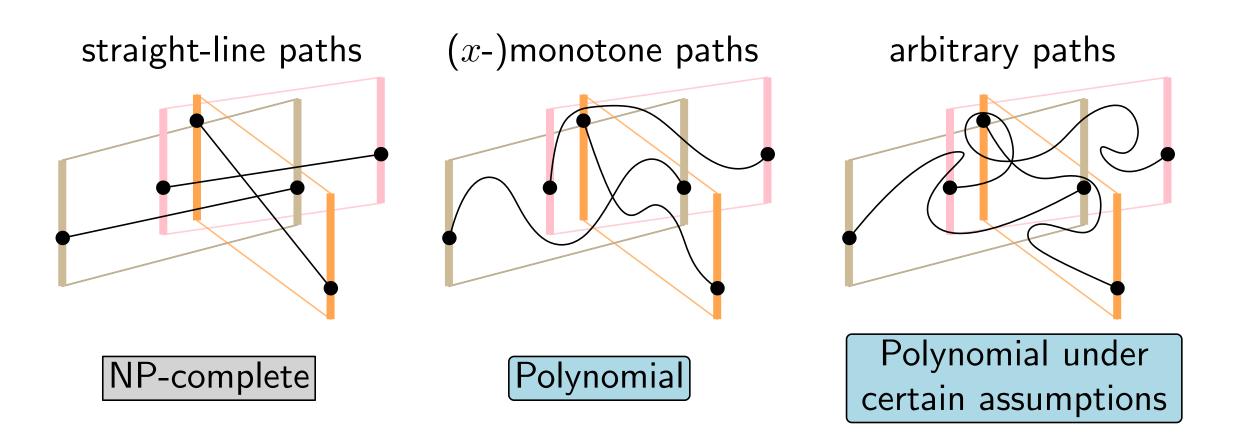


Recall: endpoints can be anywhere on the vertical line segments

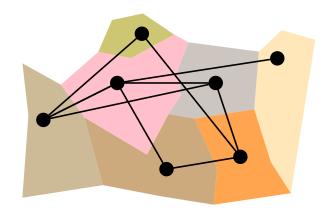




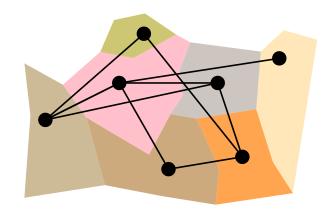




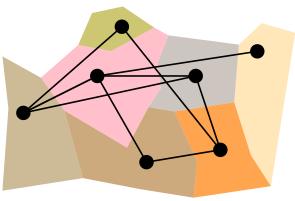
- Force-directed approach for general problem [Abellanas et al., 2005]

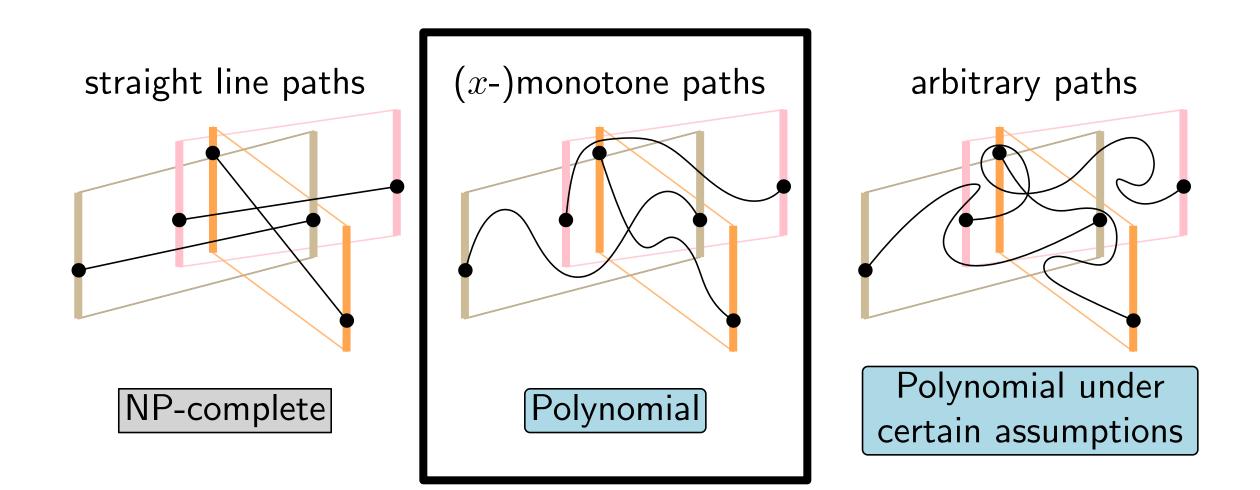


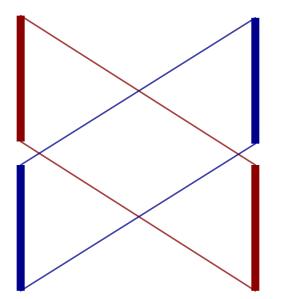
- Force-directed approach for general problem [Abellanas et al., 2005]
- Straight-line case shown NP-hard for:
 - Cycle graphs when regions are vertical segments [Löffler, 2011]
 - Matchings when regions are vertical segments [Aloupis et al., 2015; Verbeek, 2008]
 - General graphs when regions are unit squares [Angelini et al., 2014]



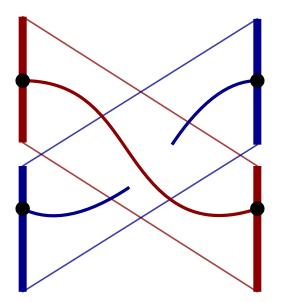
- Force-directed approach for general problem [Abellanas et al., 2005]
- Straight-line case shown NP-hard for:
 - Cycle graphs when regions are vertical segments [Löffler, 2011]
 - Matchings when regions are vertical segments [Aloupis et al., 2015; Verbeek, 2008]
 - General graphs when regions are unit squares [Angelini et al., 2014]
- Several other related problems:
 - Fitting planar graphs to planar maps [Alam et al., 2015]
 - *c*-planarity / ordered-level planarity [Feng et al., 1995, Klemz and Rote, 2017]
 - Manhattan geodesic planarity [Katz et al., 2009]
 - Non-crossing connectors in the plane [Kratochvíl and Ueckerdt, 2013]



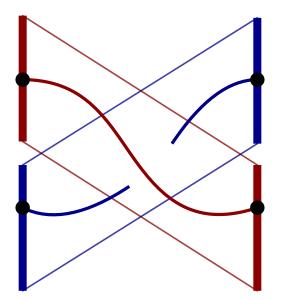


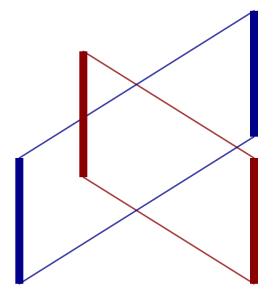


full crossing (no solution)

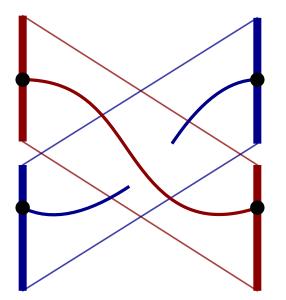


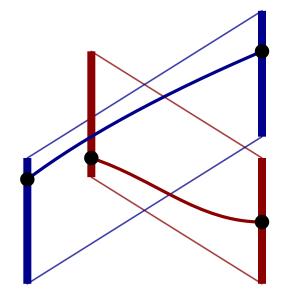
full crossing (no solution)



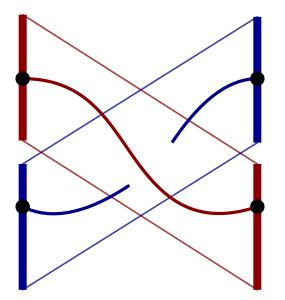


full crossing (no solution) single intersection

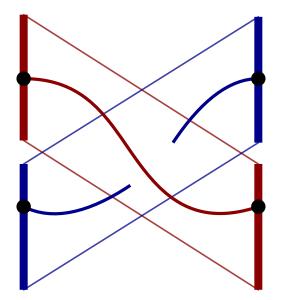


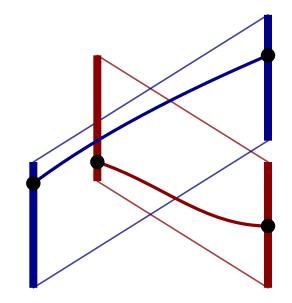


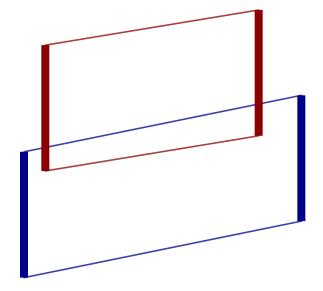
full crossing (no solution) single intersection



single intersection induces vertical order between paths *e.g., blue path is "above" red*

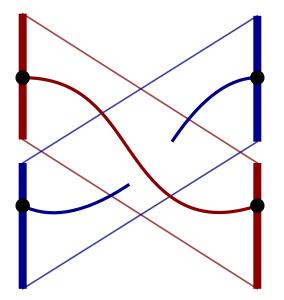


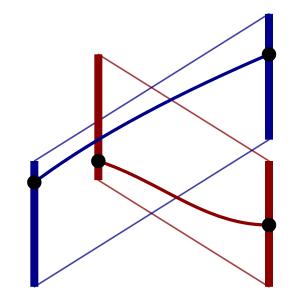


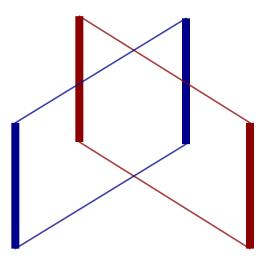


full crossing (no solution)

single intersection induces vertical order between paths e.g., blue path is "above" red

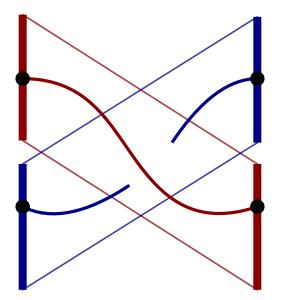


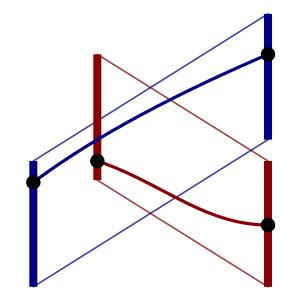


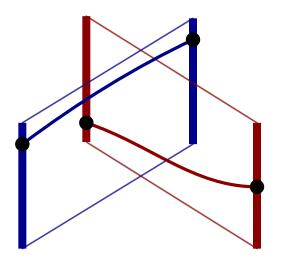


full crossing (no solution)

single intersection induces vertical order between paths *e.g., blue path is "above" red*

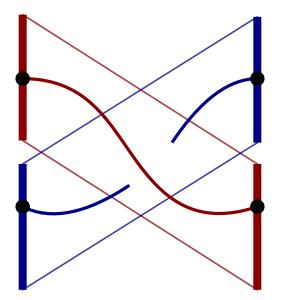


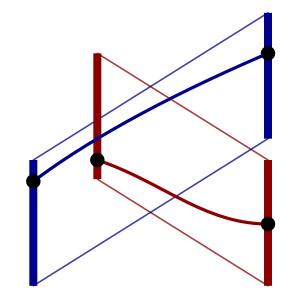


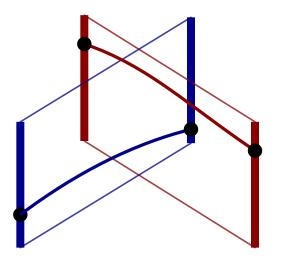


full crossing (no solution)

single intersection induces vertical order between paths *e.g., blue path is "above" red*

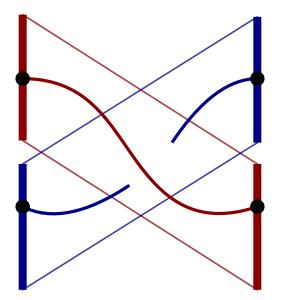


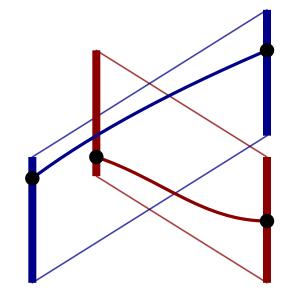


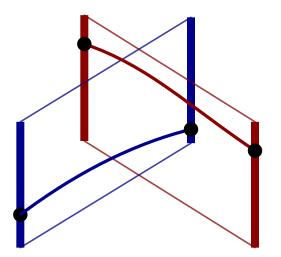


full crossing (no solution)

single intersection induces vertical order between paths *e.g., blue path is "above" red*

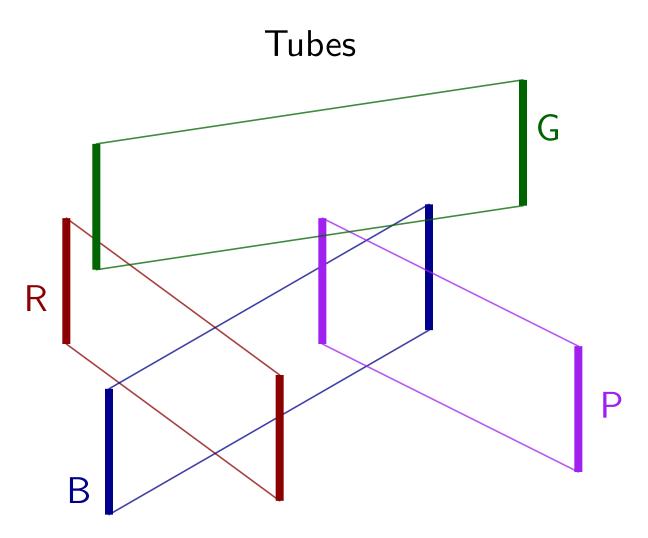




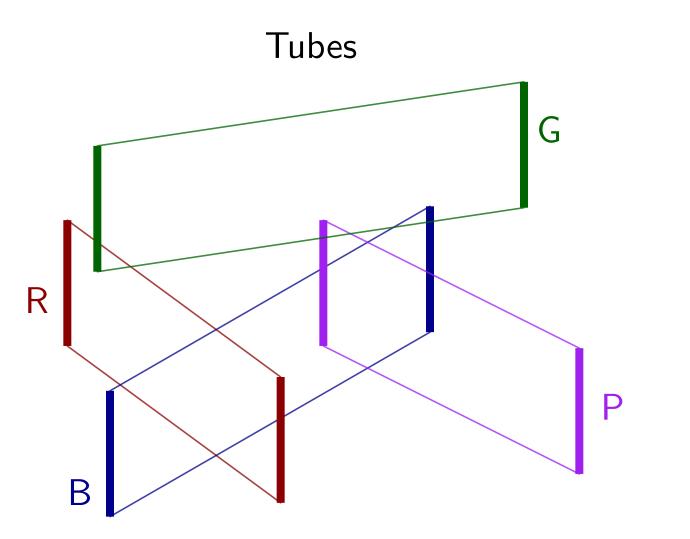


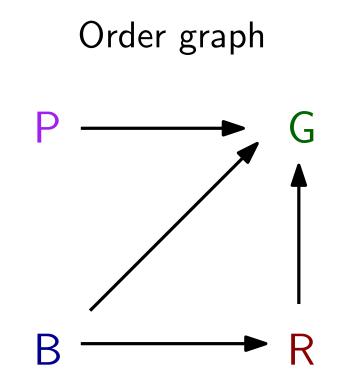
full crossing (no solution)

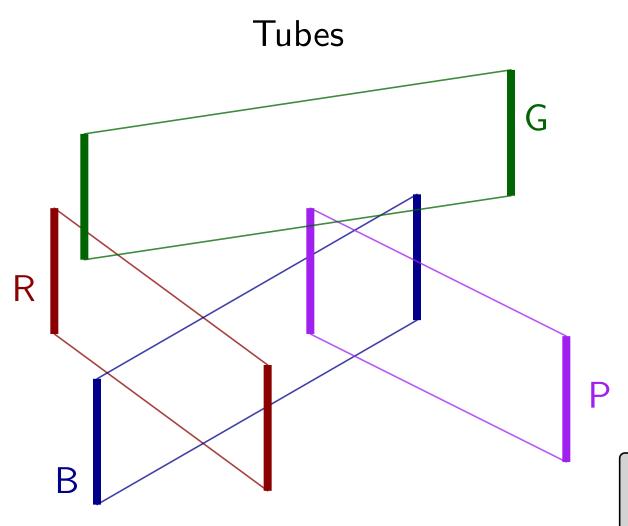
single intersection double intersection induces vertical order between paths \rightarrow we can define an *e.g., blue path is "above" red*



Order graph

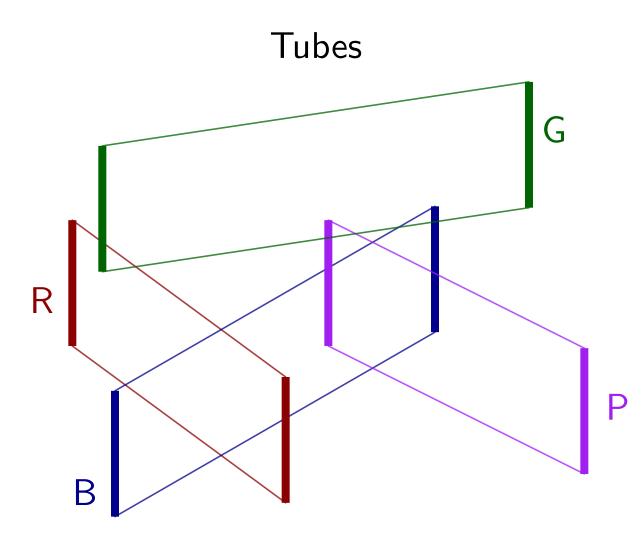




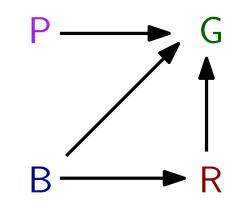


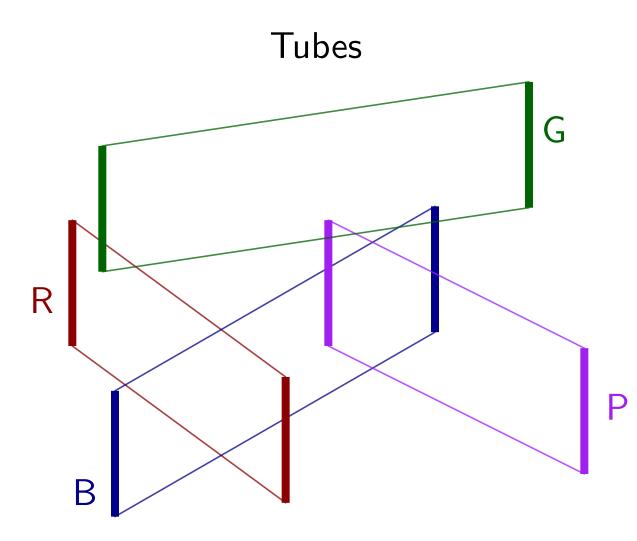
Order graph P G G R

There is a solution if and only if the order graph has no directed cycles

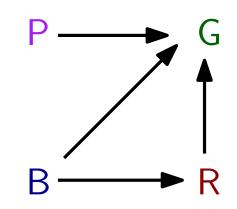


Order graph

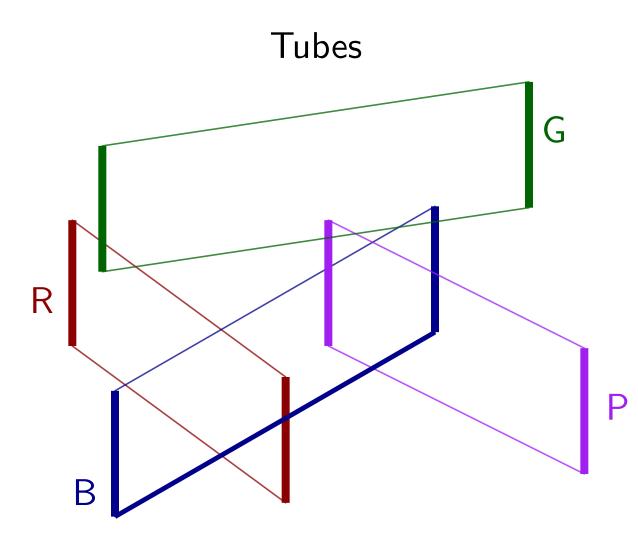




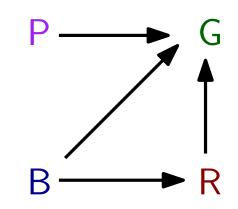
Order graph



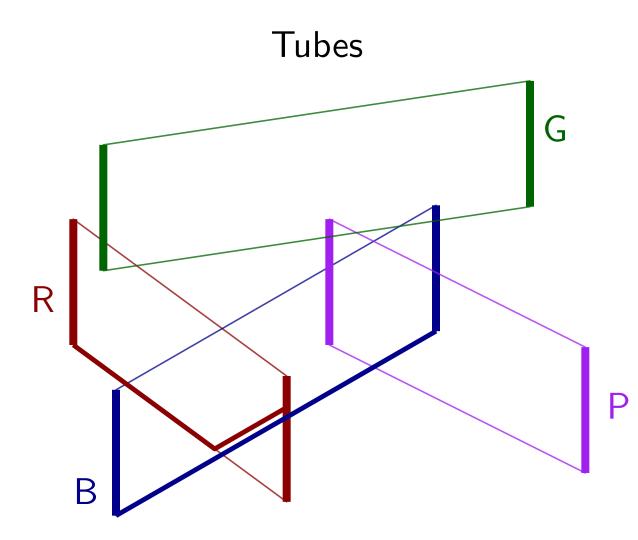
- extract total order e.g., B R P G
- follow that order, drawing paths as low as possible



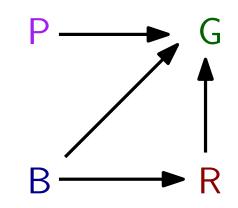
Order graph



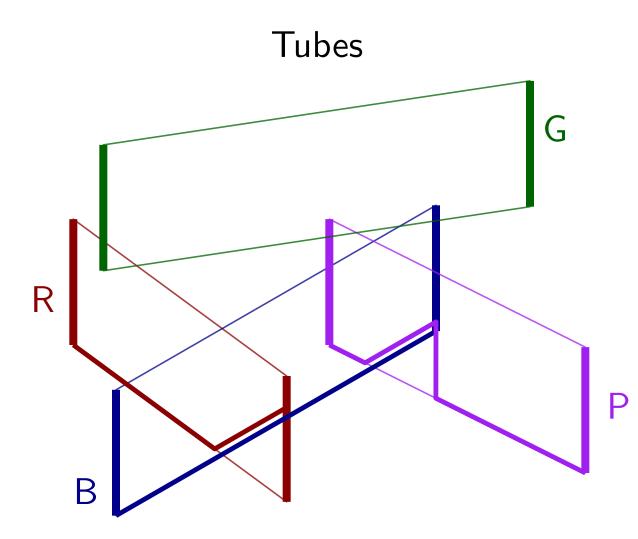
- extract total order e.g., B R P G
- follow that order, drawing paths as low as possible



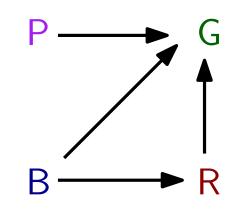
Order graph



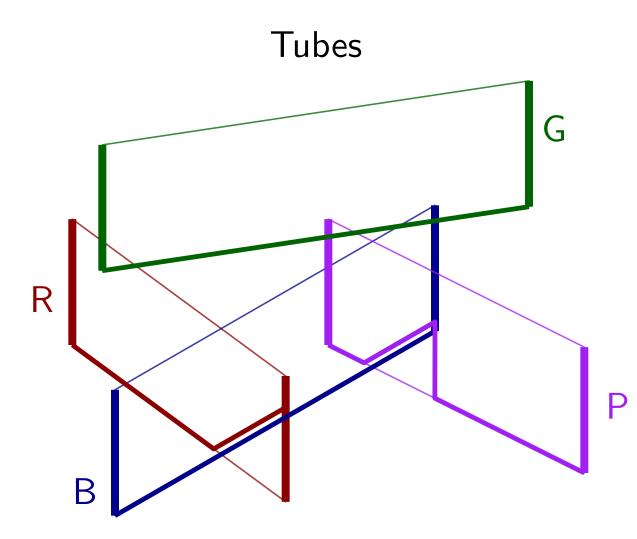
- extract total order e.g., B R P G
- follow that order, drawing paths as low as possible



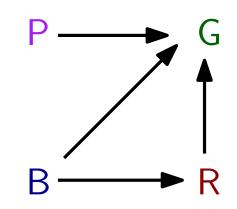
Order graph



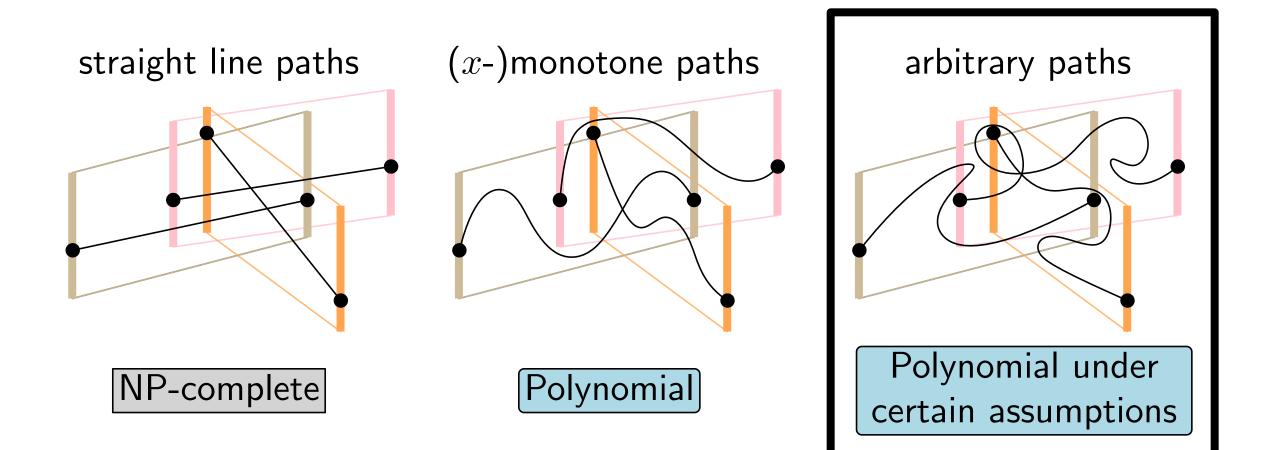
- extract total order e.g., B R P G
- follow that order, drawing paths as low as possible



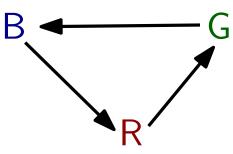
Order graph

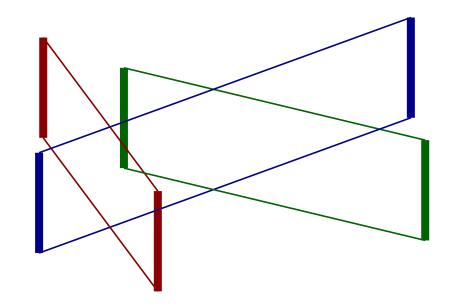


- extract total order e.g., B R P G
- follow that order, drawing paths as low as possible

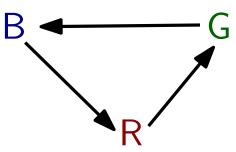


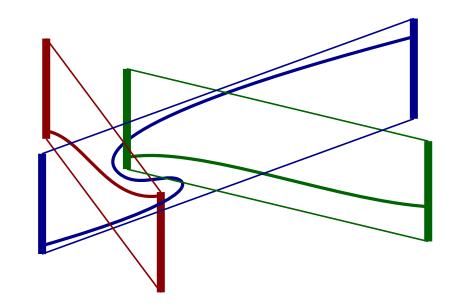
Now, some cycles of directed edges can be solved:



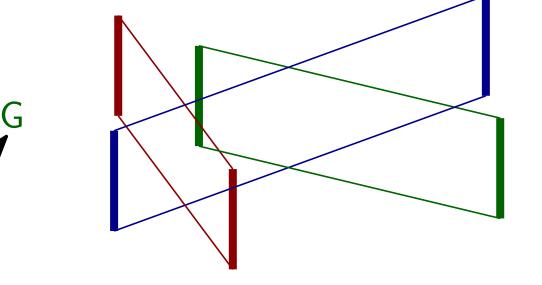


Now, some cycles of directed edges can be solved:



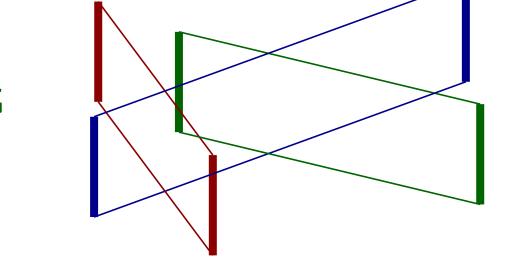


Now, some cycles of directed edges can be solved:

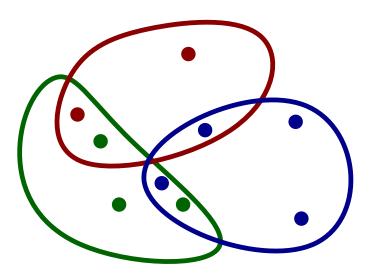


Related problem: Non-crossing connectors [Kratochvíl and Ueckerdt, 2013]

Now, some cycles of directed edges can be solved:



Related problem: Non-crossing connectors [Kratochvíl and Ueckerdt, 2013]

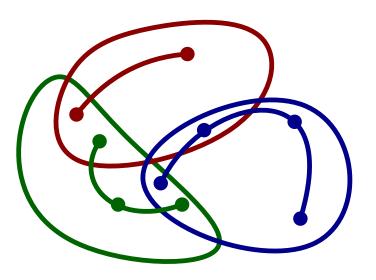


Arbitrary paths

Now, some cycles of directed edges can be solved:

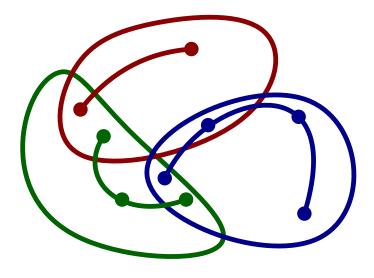
G

Related problem: Non-crossing connectors [Kratochvíl and Ueckerdt, 2013]

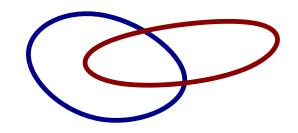


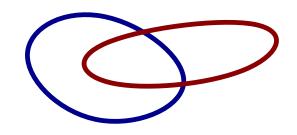
Arbitrary paths

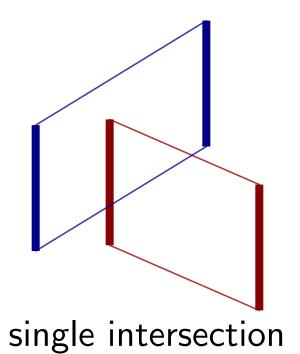
Now, some cycles of directed edges can be solved:

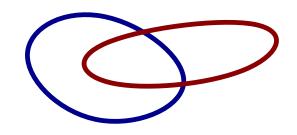


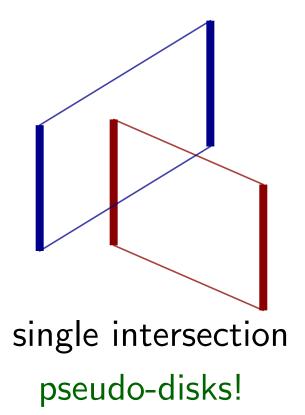
They prove: If the regions are pseudo-disks, there is always a solution

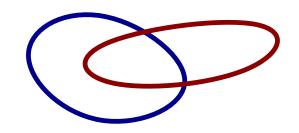


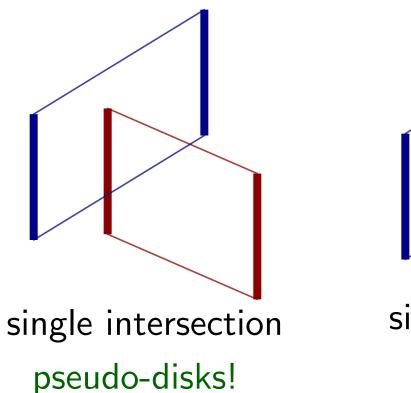




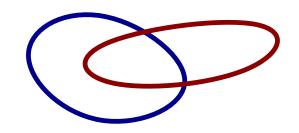


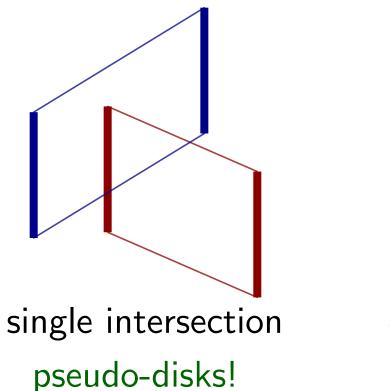


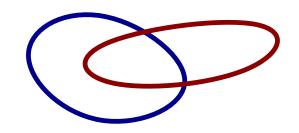


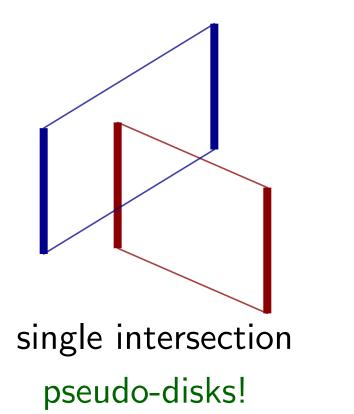


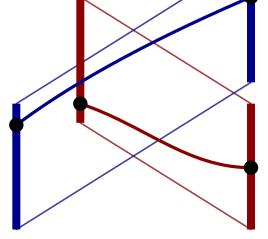
single intersection

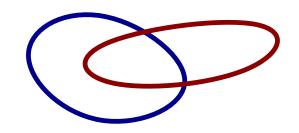


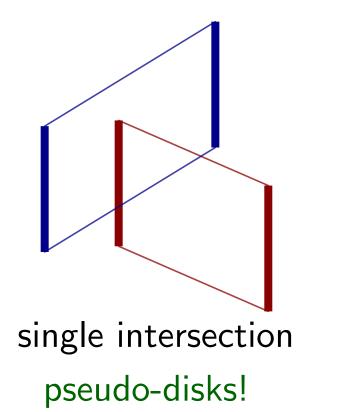


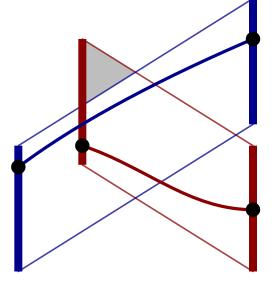


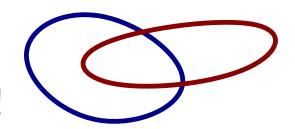


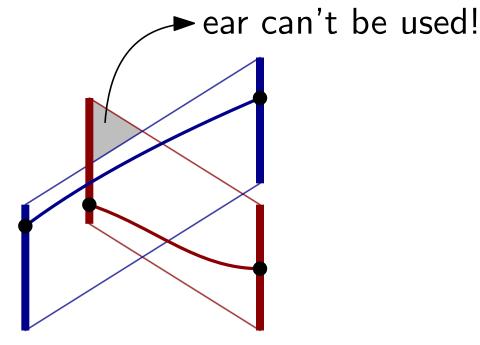




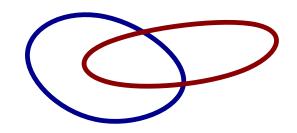


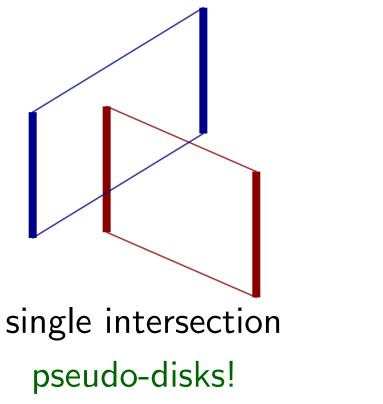


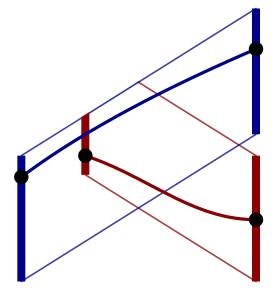


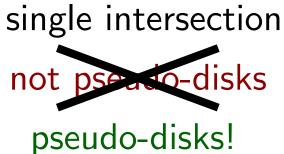


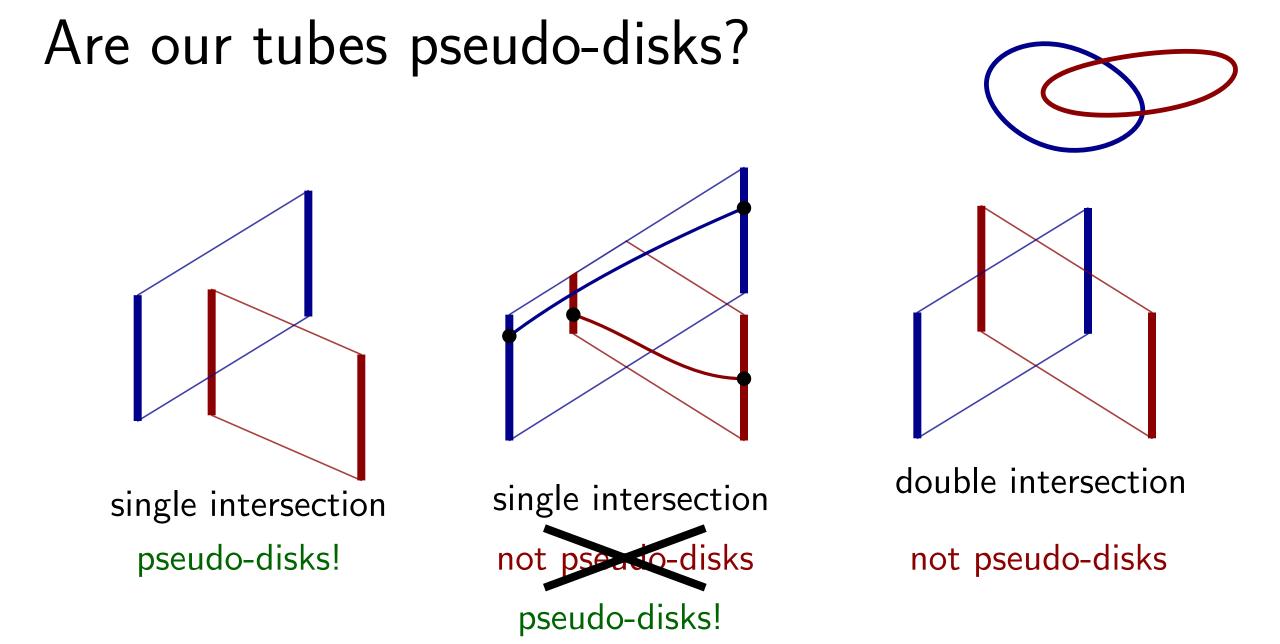
single intersection pseudo-disks!

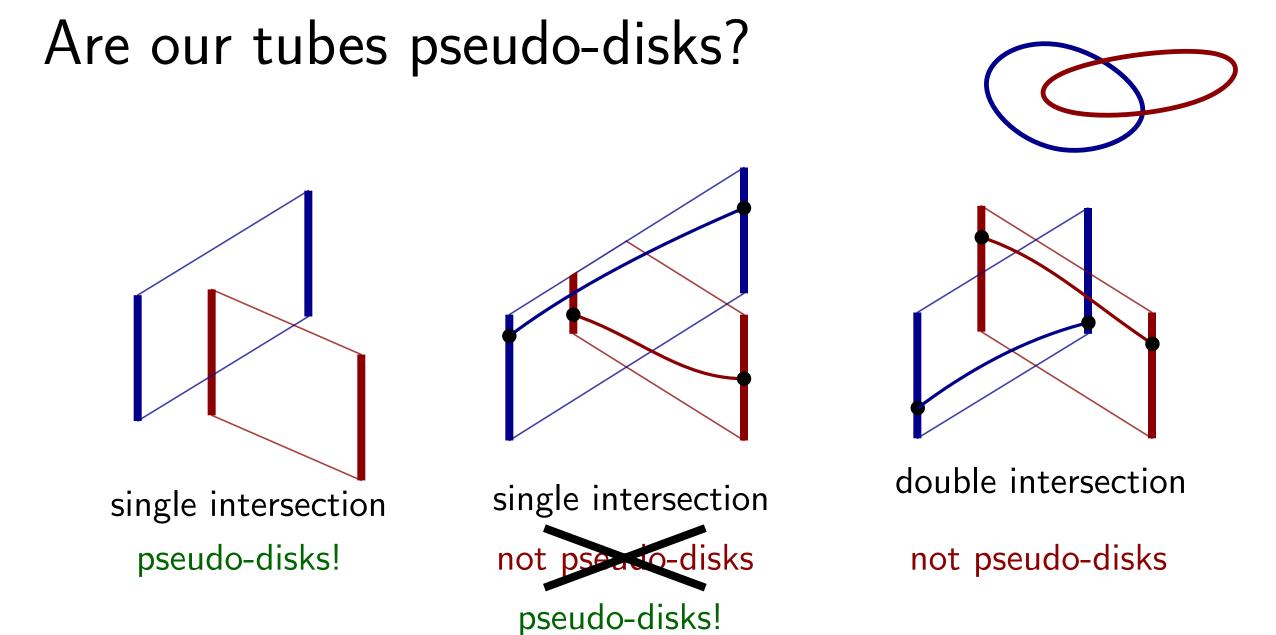


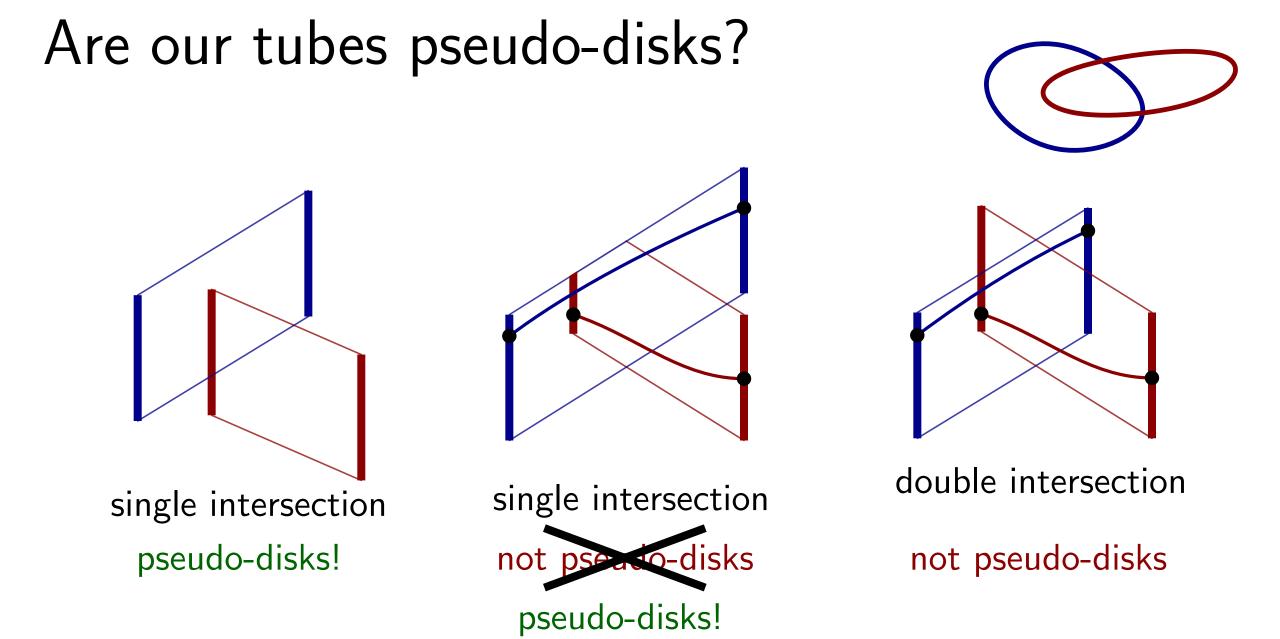


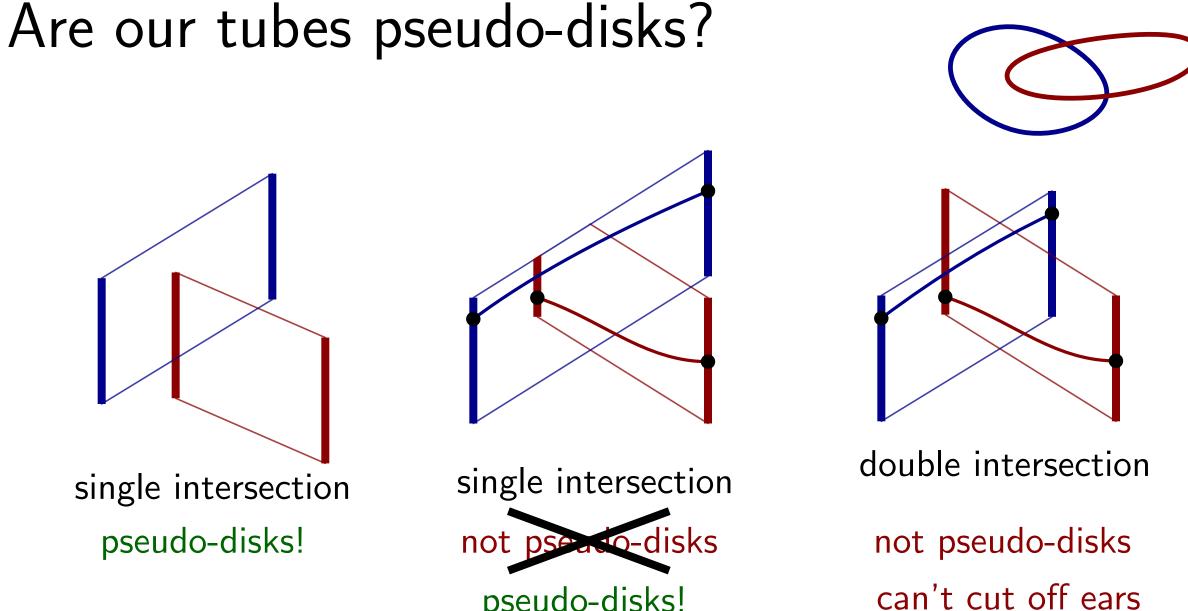




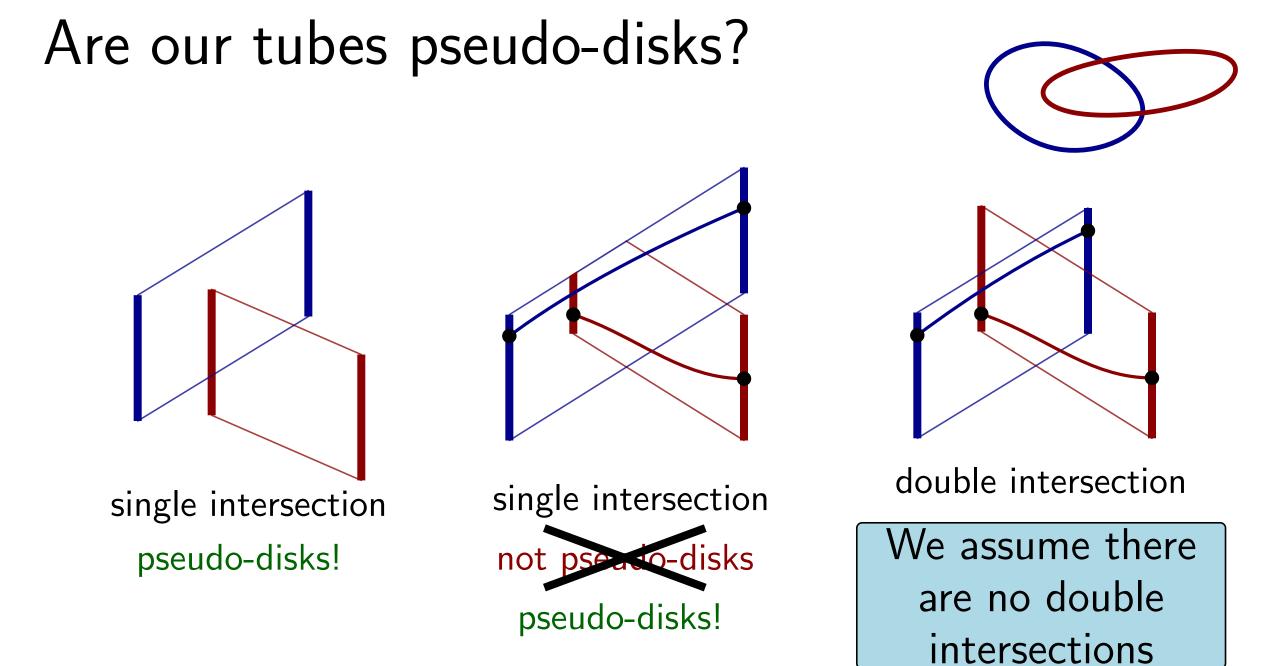








pseudo-disks!

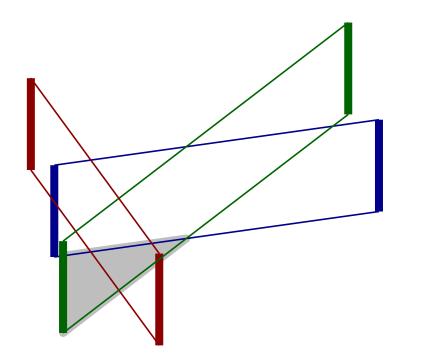


Algorithm: while there is pair of tubes not pseudo-disks, cut off ear.

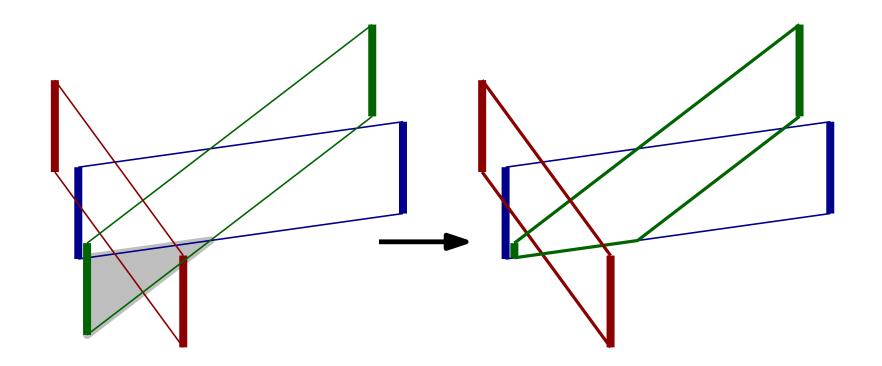
Algorithm: while there is pair of tubes not pseudo-disks, cut off ear. Result: set of pruned tubes that are pseudo-disks

Algorithm: while there is pair of tubes not pseudo-disks, cut off ear. Result: set of pruned tubes that are pseudo-disks

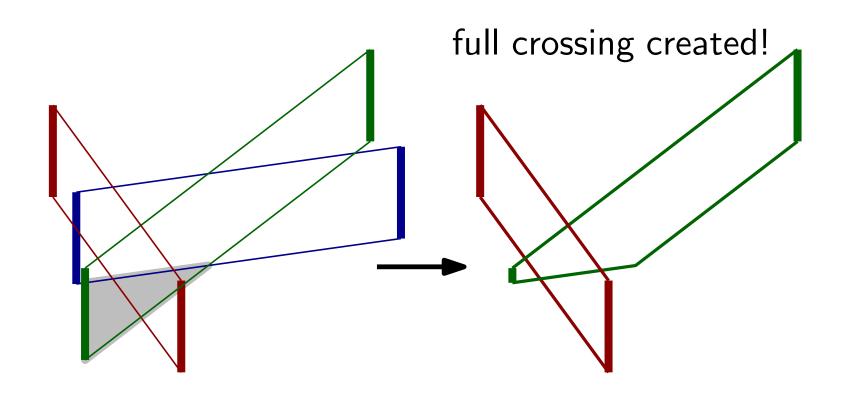
Algorithm: while there is pair of tubes not pseudo-disks, cut off ear. Result: set of pruned tubes that are pseudo-disks



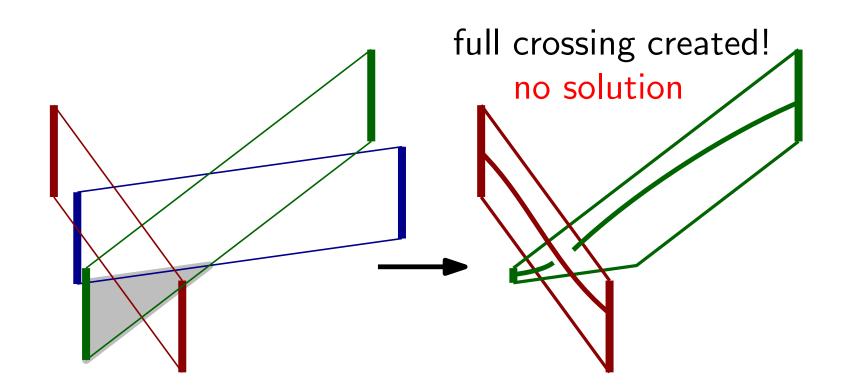
Algorithm: while there is pair of tubes not pseudo-disks, cut off ear. Result: set of pruned tubes that are pseudo-disks



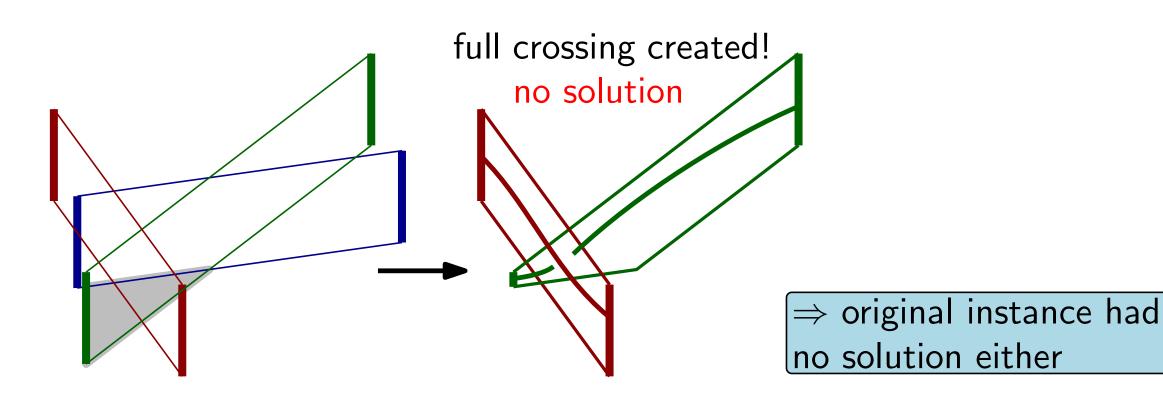
Algorithm: while there is pair of tubes not pseudo-disks, cut off ear. Result: set of pruned tubes that are pseudo-disks



Algorithm: while there is pair of tubes not pseudo-disks, cut off ear. Result: set of pruned tubes that are pseudo-disks



Algorithm: while there is pair of tubes not pseudo-disks, cut off ear. Result: set of pruned tubes that are pseudo-disks



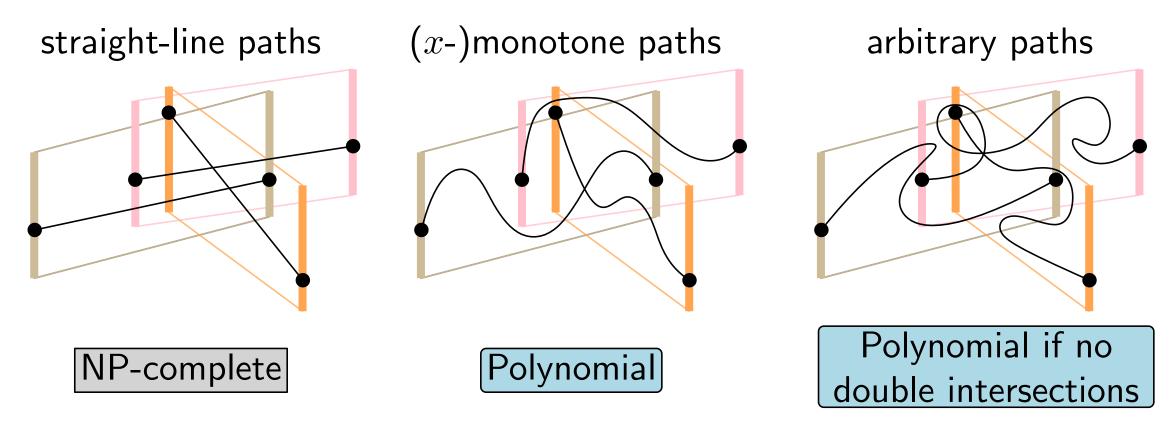
Algorithm: while there is pair of tubes not pseudo-disks, cut off ear. Result: set of pruned tubes that are pseudo-disks

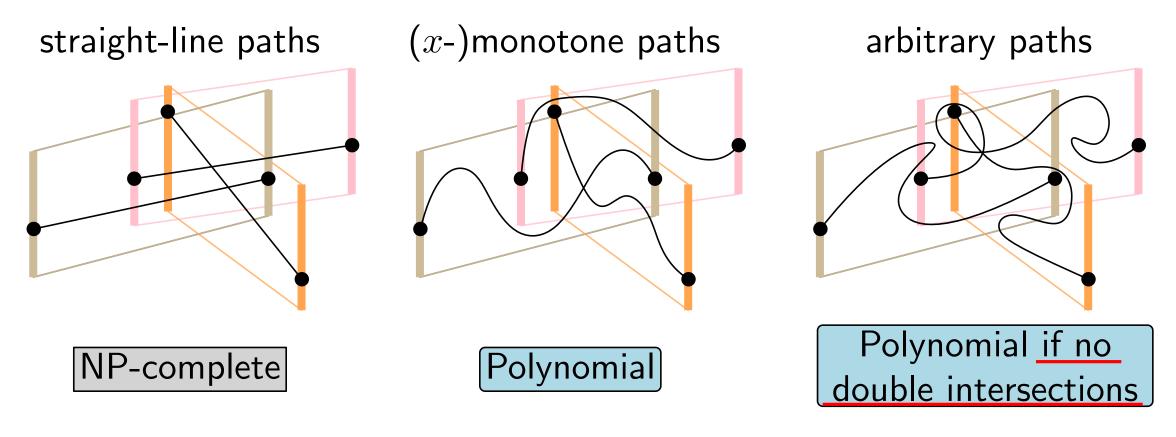
... then there is always a solution?

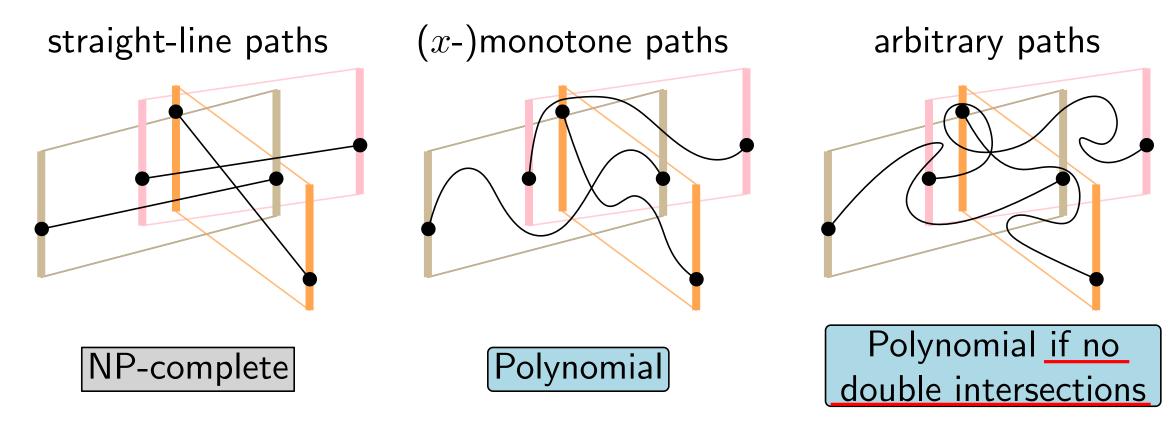
full exercise exected

If there are no double intersections, one can determine if all the tubes can be connected using arbitrary paths in polynomial time

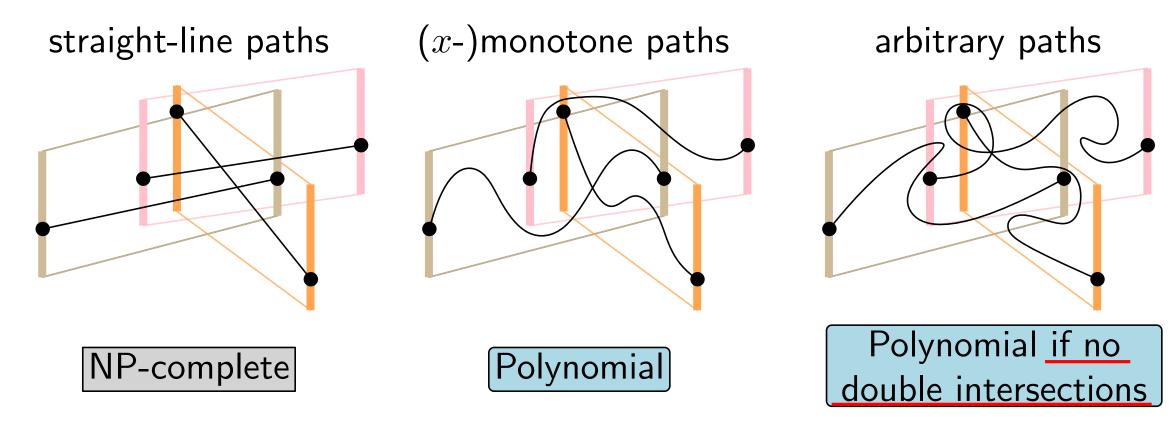
> \Rightarrow original instance had no solution either







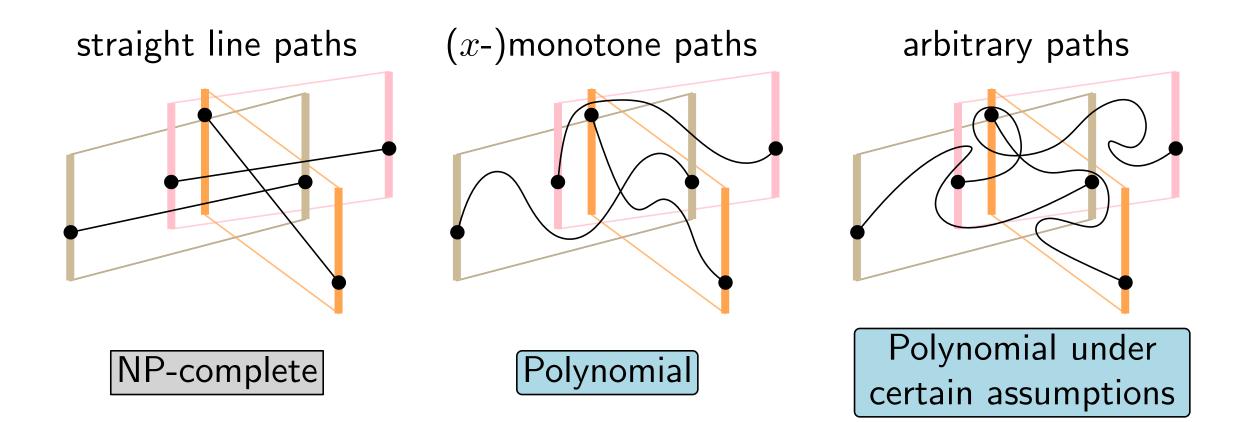
Is it also polynomial if there are double intersections?



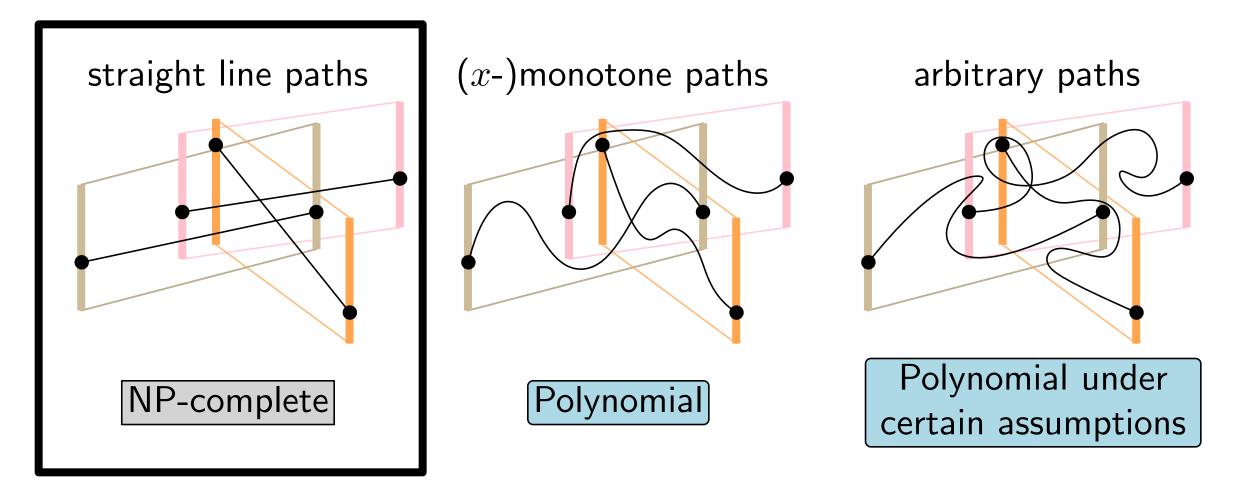
Is it also polynomial if there are double intersections?

We conjecture the answer is **Yes**

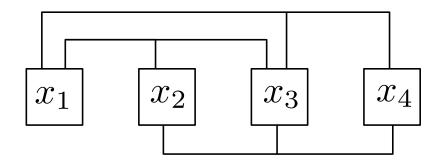
Our results



Our results



Given n tubes defined by unit vertical segments, deciding if the tubes can be connected with straight line segments is NP-Complete



Reduction from Rectilinear Planar 3-SAT

Given n tubes defined by unit vertical segments, deciding if the tubes can be connected with straight line segments is NP-Complete

Two useful gadgets:

Blocker

Given n tubes defined by unit vertical segments, deciding if the tubes can be connected with straight line segments is NP-Complete

Two useful gadgets:

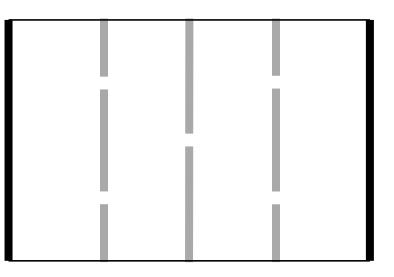
 I_i \rightarrow forced segment I_{i+1}

Blocker

Given n tubes defined by unit vertical segments, deciding if the tubes can be connected with straight line segments is NP-Complete

Two useful gadgets:

 I_i \rightarrow forced segment I_{i+1}

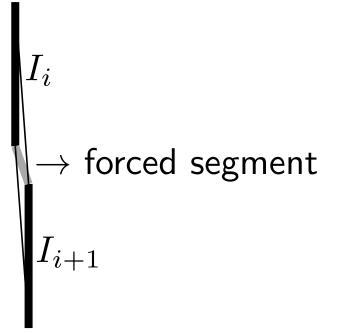


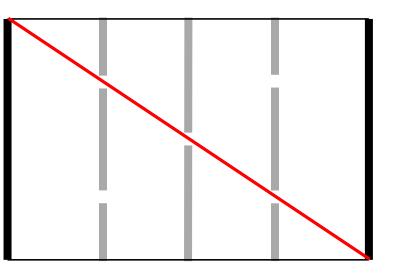
Blocker

Variable

Given n tubes defined by unit vertical segments, deciding if the tubes can be connected with straight line segments is NP-Complete

Two useful gadgets:





Blocker

Variable

Given n tubes defined by unit vertical segments, deciding if the tubes can be connected with straight line segments is NP-Complete

Two useful gadgets:

