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Algorithmic question:

Given a geographic network,
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Need to precise:

e [Type of graph «+ matching
e Regions < unit vertical segments

e Curves to draw edges
< drawn inside convex hulls of
edge vertical segments (tubes)
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Recall: endpoints can be anywhere on the vertical line segments
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- Straight-line case shown NP-hard for:
e Cycle graphs when regions are vertical segments [Loffler, 2011]
e Matchings when regions are vertical segments [Aloupis et al., 2015; Verbeek, 2008]

e General graphs when regions are unit squares [Angelini et al., 2014]
- Several other related problems:

e Fitting planar graphs to planar maps [Alam et al., 2015]

[Feng et al., 1995,
Klemz and Rote, 2017]

e Manhattan geodesic planarity [Katz et al., 2009)

e c-planarity / ordered-level planarity

e Non-crossing connectors in the plane [Kratochvil and Ueckerdt, 2013]
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How can two tubes intersect?

full crossing single intersection double intersection

(no solution) induces vertical order

between paths W€ can define an

e.g., blue path is order graph

“above” red
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Order graph

Tubes Order graph

G P » G
A

B > R

B 'There is a solution if and only if the
order graph has no directed cycles
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Arbitrary paths

Now, some cycles of directed edges
can be solved: B - G

N

Related problem: Non-crossing connectors [Kratochvil and Ueckerdt, 2013]

They prove: If the regions are pseudo-disks,
there is always a solution
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Are our tubes pseudo-disks? @

)

single intersection single intersection

pseudo-disks! notMsks We assume there

pseudo-disks! Efre no dO_Ub|€
Intersections

double intersection
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If no double intersections

Algorithm: while there is pair of tubes not pseudo-disks, cut off ear.
Result: set of pruned tubes that are pseudo-disks
... then there is always a solution?

full crossing created!
no solution

= original instance had
no solution either




If no double intersections

If there are no double intersections, one can determine if all the tubes
can be connected using arbitrary paths in polynomial time
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Polynomial if no
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NP-complete [Polynomiall

Is it also polynomial if there are double intersections?|

r\/Ve conjecture the answer is Yes
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Given n tubes defined by unit vertical segments, deciding if the tubes
can be connected with straight line segments is NP-Complete

We can now propagate
truth values...

...as well as representing
negations and clauses, so
that the reduction works




