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≤ d
G

planar : 5-degenerate; outerplanar : 2-degenerate.

planar : sn ≤ 2
√
n; outerplanar : sn ≤ 2

G

Recognition: Testing for membership in a graph class.
both planarity and outerplanarity can be tested in linear time.

}
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Background : General Drawings

k-planar graphs – introduced by Ringel ’65.

• Edge density: 4.108n
√
k [Pach, Tóth ’97]

→ 8.216
√
k-degenerate (via avg. degree)

• O(
√
kn) treewidth [Dujmović, Eppstein, Wood ’17]

→ sn ∈ O(
√
kn)

k-quasi-planar graphs

• Edge density: (n log n)2α(n)ck [Fox, Pach, Suk ’13]
Conjectured to be ckn [Pach et al ’96]

• 1-planarity testing is NP-hard [Grigoriev, Bodlaender ’07]

• k-planar ⊂ (k + 1)-quasi-planar:
k > 2 [Angelini et al ’17], k = 2 [Hoffmann, Tóth ’17]

Comparing Classes:
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Background : Outer Drawings

Outer k-planarity

Outer k-quasi-planarity

Outer k-crossing (≤ k crossings in the whole drawing)

• O(
√
k) treewidth → sn ∈ O(

√
k)

• Ext. Monadic Second Order Logic
(MSO2) formula for outer k-crossing
→ testing outer k-crossing in time O(f (k)(n + m))

[Bannister,
Eppstein ’14]

• treewidth ≤ 3k + 11 → sn ≤ 3k + 12 [Wood, Telle ’07]

• Edge density: ≤ 2(k − 1)n −
(

2k−1
2

)
[Capoyleas, Pach ’92]

→ (4k − 5)-degenerate

• Recognition:
outer 1-planar in linear time [Auer et al ’16, Hong et al ’15]
full outer 2-planar in linear time [Hong, Nagamochi ’16]

}
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a

b

• a complete bipartite graph crosses ab.
• thus, for even n, k ≥ ( n−2

2 )2, and
for odd n, k ≥ 1

4 (n − 3)(n − 1)

→ n ≤ b
√

4k + 1c+ 2
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Proceed by induction on the range [`, `∗]
where there can be no edge with any
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Edge maximal outer k-quasi-planar drawings
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if |V | ≥ 2k − 1.
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Edge maximal outer k-quasi-planar drawings

Some equivalent questions:

For a convex n-gon, how many chords can be inserted without
making k pairwise crossings? [Nakamigawa ’00]

What is the biggest line arrangment in the hyperbolic plane
with ≤ n points at ∞ and without k mutually crossing lines
(Karzanov number ≤ k − 1) ? [Dress et al. 2002]
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Monadic Second Order Logic (MSO2)

Thm (Courcelle): If a property P is expressed as ϕ ∈ MSO2,
then for every graph G with treewidth at most t, P can be
tested in time O(f (t, |ϕ|)(n +m)) for a computable function f .

But, what is MSO2 again?

Formally:
• variables: vertices, edges, sets of vertices, and sets of edges;
• binary relations: equality (=), set membership (∈), subset

of a set (⊆), and edge–vertex incidence (I );
• standard propositional logic operators: ¬, ∧, ∨, →, ↔.
• standard quantifiers (∀,∃).

Partition(A,B,C ) ≡ (∀u)[(u ∈ A ∨ u ∈ B ∨ u ∈ C )
∧(u ∈ A→ (u /∈ B ∧ u /∈ C )) ∧ (u ∈ B → (...)) ∧ (...)]
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Encoding a Crossing in MSO2

Conn(V ,E ) ≡ the graph (V,E) is
connected.

Crossing(E∗, e, e′) ≡ (∀A,B,C )
[(
V-Partition(A,B,C )

∧ (x ∈ C ↔ I (e, x)) ∧Conn(A,E∗) ∧Conn(B,E∗)
)

→ (∃a ∈ A)(∃b ∈ B)[I (e′, a) ∧ I (e′, b)]
]

e

e′

A

B
CHamiltonian(E∗) ≡ The edge

set E∗ is a Hamiltonian cycle in
the graph G .

V-Partition(A,B,C ) ≡
(A,B,C ) is a partition of the
vertex set.
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be expressed in MSO2.

• closed k-planarity can be tested in linear FPT-time
(parameterized by k).

• closed k-quasi-planarity can be tested in linear FPT-time
(parameterized by both k and treewidth).

• Note: edge maximal outer k-planarity ⊂ closed k-planarity.
→ efficient testing of edge maximal outer k-planarity.

Can these expressions be generalized to full drawings?

no crossing “visible” from “outside”

full outer 2-planarity testing in linear time
[Hong, Nagamochi ’16]
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Conclusion

Thank you for your attention :-)

Outer k-planar graphs:

• tight bounds on degeneracy, and chromatic number.
Quasi-polynomial time recognition via balanced separators,
closed drawings testable in linear time.

• Open: polytime recognition for all k > 1.

Outer k-quasi-planar graphs:

• outer 3-quasi-planarity is incomparable with planarity.
Open: planarity vs. outer 4-quasi-planarity.

• closed drawings are expressible in MSO2.
Open: recognition both in general and for closed drawings.

• Open: tight bounds on: degeneracy, chromatic number,
page number.
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