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Recognition: Testing for membership in a graph class.
both planarity and outerplanarity can be tested in linear time.




Background : General Drawings

k-planar graphs — introduced by Ringel '65.

o Edge density: 4.108nv k
— 8.216+/ k-degenerate (via avg. degree)

o O(Vkn) treewidth
— sn € O(Vkn)

e 1l-planarity testing is NP-hard

k-quasi-planar graphs
e Edge density: (nlog n)2("™
Conjectured to be cin

Comparing Classes:
e k-planar C (k 4 1)-quasi-planar:
K > 2 k=2
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Outer k-crossing (< k crossings in the whole drawing)
o O(Vk) treewidth — sn € O(Vk) \
e Ext. Monadic Second Order Logic }

(MSQO,) formula for outer k-crossing
— testing outer k-crossing in time O(f(k)(n+ m))

Outer k-planarity
o treewidth <3k + 11 — sn < 3k + 12

e Recognition:
outer 1-planar in linear time
full outer 2-planar in linear time

Outer k-quasi-planarity
o Edge density: < 2(k — 1)n— (%1
— (4k — 5)-degenerate



Results

Outer k-planar graphs
e (|V4k + 1|+ 1)-degenerate — (|v/4k + 1] + 2)-colorable

e separation number < 2k 4+ 3 — quasi-poly time recognition




Results

Outer k-planar graphs
e (|V4k + 1] + 1)-degenerate — (|v/4k + 1| + 2)-colorable

e separation number < 2k 4+ 3 — quasi-poly time recognition

Outer k-quasi-planar graphs
e Quter 3-quasi planarity is incomparable with planarity

e edge maximal drawings



Results

Outer k-planar graphs
e (|V4k + 1] + 1)-degenerate — (|v/4k + 1| + 2)-colorable

e separation number < 2k 4+ 3 — quasi-poly time recognition

Outer k-quasi-planar graphs
e Quter 3-quasi planarity is incomparable with planarity

e edge maximal drawings

Closed Drawings in MSO,

e closed outer k-planarity and
closed outer
k-quasi-planarity can be
expressed in MSQO»




Outline

Outer k-planar graphs
e (|V4k+ 1|+ 1)-degenerate — (|v/4k + 1] + 2)-colorable

e separation number < 2k 4+ 3 — quasi-poly time recognition

Outer k-quasi-planar graphs
e Quter 3-quasi planarity is incomparable with planarity

e edge maximal drawings

Closed Drawings in MSO,

e closed outer k-planarity and
closed outer
k-quasi-planarity can be
expressed in MSQO»




Outer k-planarity

Obs: An outer k-planar clique has < |4k + 1] + 2 vertices



Outer k-planarity

Obs: An outer k-planar clique has < |4k + 1] + 2 vertices

Proof: e a complete bipartite graph crosses ab.

[ >




Outer k-planarity

Obs: An outer k-planar clique has < |v/4k + 1| + 2 vertices

Proof: e a complete bipartite graph crosses ab.
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Obs: An outer k-planar clique has < |v/4k + 1| + 2 vertices

Thm: outer k-planar graphs are (|v/4k + 1| + 1)-degenerate.
Proof (|dea)

Suppose, > / vertices left of ab, w/ deg. > .
— 0 — (¢ 4 1) edges cross ab

Note: § > |4k +1|+1,¢= L%\/‘Lk‘l‘ 1] +1
is not possible by the proof of Obs.

Proceed by induction on the range [/, /*]
where there can be no edge with any
x € [¢, £*] vertices on it's left. -

Cor: Outer k-planarity — (|v/4k + 1| + 2)-colorable (tight).
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Edge maximal outer k-quasi-planar drawings

Thm: Each edge maximal outer k-quasi-planar drawing of
G =(V,E) has

(1Y if V] <2k —1,
2(k—=1)|V| = (35 if|V]>2k-1.

E| =

Some equivalent questions:

For a convex n-gon, how many chords can be inserted without
making k pairwise crossings?

What is the biggest line arrangment in the hyperbolic plane
with < n points at oo and without k mutually crossing lines
(Karzanov number < k — 1) 7
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Encoding a Crossing in MSO»

V-PARTITION(A, B, C) =

(A, B, C) is a partition of the
vertex set.

CONN(V, E) = the graph (V,E) is
connected.

HAMILTONIAN(E™) = The edge
set £* is a Hamiltonian cycle in
the graph G.

CROSSING(E*, e, €') = (VA, B, C) | (V-PARTITION(A, B, C)
A (x € C <> I(e,x)) AN CONN(A, E*) A CONN(B, E*))
— (da € A)(Ib e B)[I(€',a) N I(€, b)]]



Implications of our MSO, formulae

e closed drawings which are k-planar or k-quasi planar can
be expressed in MSO».
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— efficient testing of edge maximal outer k-planarity.
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e closed k-quasi-planarity can be tested in linear FPT-time
(parameterized by both k and treewidth).

e Note: edge maximal outer k-planarity C closed k-planarity.
— efficient testing of edge maximal outer k-planarity.

no crossing “visible” from “outside”

¢ full outer 2-planarity testing in linear time
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Thank you for your attention :-)
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