

FernUniversität in Hagen Fakultät für Mathematik und Informatik

1-Fan-Bundle-Planar Drawings of Graphs

Patrizio AngeliniMichael A. BekosMichael KaufmannPhilipp KindermannThomas Schneck

MATHEMATISCH-NATURWISSENSCHAFTLICHE FAKULTÄT ARBEITSBEREICH ALGORITHMIK

Planar

1-planar

2-planar

k-planar

k-planar

k-planar

k-planar

k-planar

[Holten & van Wijk '09]

[Lambert, Bourqui & Auber '10]

1-sided

1-Fan-Bundle-Planarity

1-Fan-Bundle-Planarity Density

1-Fan-Bundle-Planarity
Density
Relationships

1-Fan-Bundle-Planarity
Density
Relationships
Recognition

Upper bound: Take maximally dense graph *G*, make it planar

Upper bound: Take maximally dense graph *G*, make it planar

Remove 2 edges, create 3 faces

Upper bound: Take maximally dense graph *G*, make it planar

Remove 2 edges, create 3 faces

Upper bound: Take maximally dense graph *G*, make it planar

Remove 2 edges, create 3 faces

Upper bound: Take maximally dense graph *G*, make it planar

Remove 2 edges, create 3 faces

Upper bound: Take maximally dense graph *G*, make it planar

Remove 2 edges, create 3 faces

Upper bound: Take maximally dense graph *G*, make it planar

Remove 2 edges, create 3 faces

Upper bound: Take maximally dense graph *G*, make it planar

Remove 2 edges, create 3 faces

Upper bound: Take maximally dense graph *G*, make it planar

Remove 2 edges, create 3 faces

Remove 1 edge, create 2 faces

Upper bound: Take maximally dense graph *G*, make it planar

Remove 2 edges, create 3 faces Remove 1 edge, create 2 faces

 \Rightarrow Planar graph $G', m' \leq 3n - 6, f' \leq 2n - 4$

Upper bound: Take maximally dense graph *G*, make it planar

Remove 2 edges,
create 3 facesRemove 1 edge,
create 2 faces \Rightarrow Planar graph $G', m' \leq 3n - 6, f' \leq 2n - 4$ $\Rightarrow m \leq m' + 2f'/3$

Upper bound: Take maximally dense graph *G*, make it planar

Remove 2 edges,
create 3 facesRemove 1 edge,
create 2 faces \Rightarrow Planar graph $G', m' \leq 3n - 6, f' \leq 2n - 4$ $\Rightarrow m \leq m' + 2f'/3 \leq 3n - 6 + 2 \cdot (2n - 4)/3$

Upper bound: Take maximally dense graph *G*, make it planar

Remove 2 edges, create 3 faces \Rightarrow Planar graph G', $m' \le 3n - 6$, $f' \le 2n - 4$ $\Rightarrow m \le m' + 2f'/3 \le 3n - 6 + 2 \cdot (2n - 4)/3 \le (13n - 26)/3$

Upper bound: (13n - 26)/3Lower bound:

Upper bound: (13n - 26)/3Lower bound:

Upper bound: (13n - 26)/3Lower bound: (5n - 10)/3

Upper bound: (13n - 26)/3Lower bound: $(5n - 10)/3 + 4 \cdot (2n - 4)/3$

Density: 1-sided

Density: 2-sided

Density: 2-sided

Flower Drawing:

Vertices on circle

Flower Drawing:

- Vertices on circle
- Every vertex has *left* and *right* bundle

Ο

- Vertices on circle
- Every vertex has *left* and *right* bundle

- Vertices on circle
- Every vertex has *left* and *right* bundle

- Vertices on circle
- Every vertex has *left* and *right* bundle
- Consecutive bundles cross

- Vertices on circle
- Every vertex has *left* and *right* bundle
- Consecutive bundles cross

Flower Drawing:

- Vertices on circle
- Every vertex has *left* and *right* bundle
- Consecutive bundles cross

Water Lily Drawing: – Flower Drawing

Flower Drawing:

- Vertices on circle
- Every vertex has *left* and *right* bundle
- Consecutive bundles cross

Water Lily Drawing:

- Flower Drawing
- Terminals partitioned into 3 sets

Flower Drawing:

- Vertices on circle
- Every vertex has *left* and *right* bundle
- Consecutive bundles cross

Water Lily Drawing:

- Flower Drawing
- Terminals partitioned into 3 sets

Flower Drawing:

- Vertices on circle
- Every vertex has *left* and *right* bundle
- Consecutive bundles cross

Water Lily Drawing:

- Flower Drawing
- Terminals partitioned into 3 sets
Flower Drawing:

- Vertices on circle
- Every vertex has *left* and *right* bundle
- Consecutive bundles cross

- Flower Drawing
- Terminals partitioned into 3 sets

Flower Drawing:

- Vertices on circle
- Every vertex has *left* and *right* bundle
- Consecutive bundles cross

- Flower Drawing
- Terminals partitioned into 3 sets

Flower Drawing:

- Vertices on circle
- Every vertex has *left* and *right* bundle
- Consecutive bundles cross

- Flower Drawing
- Terminals partitioned into 3 sets
- Cycle through terminals

Flower Drawing:

- Vertices on circle
- Every vertex has *left* and *right* bundle
- Consecutive bundles cross

- Flower Drawing
- Terminals partitioned into 3 sets
- Cycle through terminals

Flower Drawing:

- Vertices on circle
- Every vertex has *left* and *right* bundle
- Consecutive bundles cross

- Flower Drawing
- Terminals partitioned into 3 sets
- Cycle through terminals
- Zigzag pattern in each partition

Flower Drawing:

- Vertices on circle
- Every vertex has *left* and *right* bundle
- Consecutive bundles cross

- Flower Drawing
- Terminals partitioned into 3 sets
- Cycle through terminals
- Zigzag pattern in each partition

Flower Drawing:

- Vertices on circle
- Every vertex has *left* and *right* bundle
- Consecutive bundles cross

- Flower Drawing
- Terminals partitioned into 3 sets
- Cycle through terminals
- Zigzag pattern in each partition

Flower Drawing:

- Vertices on circle
- Every vertex has *left* and *right* bundle
- Consecutive bundles cross

- Flower Drawing
- Terminals partitioned into 3 sets
- Cycle through terminals
- Zigzag pattern in each partition

Flower Drawing:

- Vertices on circle
- Every vertex has *left* and *right* bundle
- Consecutive bundles cross

- Flower Drawing
- Terminals partitioned into 3 sets
- Cycle through terminals
- Zigzag pattern in each partition

Water Lily Drawings have 4n - 9 edges

Water Lily Drawings have 4n - 9 edges \Rightarrow LB for outer-2-sided: 4n - 9

Water Lily Drawings have 4n - 9 edges \Rightarrow LB for outer-2-sided: 4n - 9

Merge 2 Water Lilys \Rightarrow LB for 2-sided: 6n - 18

Water Lily Drawings have 4n - 9 edges \Rightarrow LB for outer-2-sided: 4n - 9

Merge 2 Water Lilys \Rightarrow LB for 2-sided: 6n - 18

Water Lily Drawings have 4n - 9 edges \Rightarrow LB for outer-2-sided: 4n - 9

 \Rightarrow LB for 2-layer 2-sided: 2n - 4

Density								
	2-layer		outer		general			
	LB	UB	LB	UB	LB	UB		
1-sided	$\frac{5n-7}{3}$	$\frac{5n-7}{3}$	$\frac{8n-13}{3}$	$\frac{8n-13}{3}$	$\frac{13n-26}{3}$	$\frac{13n-26}{3}$		
2-sided	2 <i>n</i> – 4		4 <i>n</i> – 9		6 <i>n</i> – 18			

Density							
	2-layer		outer		general		
	LB	UB	LB	UB	LB	UB	
1-sided	$\frac{5n-7}{3}$	$\frac{5n-7}{3}$	$\frac{8n-13}{3}$	$\frac{8n-13}{3}$	$\frac{13n-26}{3}$	$\frac{13n-26}{3}$	
2-sided	2 <i>n</i> – 4	3 <i>n</i> – 7	4 <i>n</i> – 9		6 <i>n</i> — 18		

Density						
	2-layer LB UB		outer LB UB		general LB UB	
1-sided	$\frac{5n-7}{3}$	$\frac{5n-7}{3}$	$\frac{8n-13}{3}$	$\frac{8n-13}{3}$	$\frac{13n-26}{3}$	$\frac{13n-26}{3}$
2-sided	2 <i>n</i> – 4	3 <i>n</i> – 7	4 <i>n</i> – 9	4 <i>n</i> – 9	6 <i>n</i> – 18	

Density							
	2-la LB	iyer UB	outer LB UB		general LB UB		
1-sided	$\frac{5n-7}{3}$	$\frac{5n-7}{3}$	$\frac{8n-13}{3}$	$\frac{8n-13}{3}$	$\frac{13n-26}{3}$	$\frac{13n-26}{3}$	
2-sided	2 <i>n</i> – 4	3 <i>n</i> – 7	4 <i>n</i> – 9	4 <i>n</i> – 9	6 <i>n</i> – 18	8.6 <i>n</i> – 15.6	

PLANAR

0 0 0 0 0 0

O O O

*K*_{3,14}

*K*_{3,14}

*K*_{3,14}

*K*₉

*K*₉

 K_9

Recognition

Recognition: general

 $K_{2,3}$ is drawable

 $K_{2,3}$ is drawable

... but *K*_{2,4} is not!

[Binucci et al.]

 $K_{2,3}$ is drawable

... but *K*_{2,4} is not!

[Binucci et al.]

 $K_{2,3}$ is drawable

... but *K*_{2,4} is not!

[Binucci et al.]

 $K_{2,3}$ is drawable

... but *K*_{2,4} is not!

[Binucci et al.]

 $K_{2,3}$ is drawable

... but *K*_{2,4} is not!

[Binucci et al.]

 $K_{2,3}$ is drawable

... but *K*_{2,4} is not!

[Binucci et al.]

 $K_{2,3}$ is drawable

... but *K*_{2,4} is not!

[Binucci et al.]

 $K_{2,3}$ is drawable

... but *K*_{2,4} is not!

[Binucci et al.]

Max. bicon. fan-planar:

Max. bicon. 1-sided 1-fbp:

Big Legs

	2-layer		outer		general	
	LB	UB	LB	UB	LB	UB
1-sided	$\frac{5n-7}{3}$	$\frac{5n-7}{3}$	$\frac{8n-13}{3}$	$\frac{8n-13}{3}$	$\frac{13n-26}{3}$	$\frac{13n-26}{3}$
2-sided	2 <i>n</i> – 4	3 <i>n</i> – 7	4 <i>n</i> – 9	4 <i>n</i> – 9	6 <i>n</i> – 18	8.6 <i>n</i> – 15.6

	2-layer		outer		general	
	LB	UB	LB	UB	LB	UB
1-sided	$\frac{5n-7}{3}$	$\frac{5n-7}{3}$	$\frac{8n-13}{3}$	$\frac{8n-13}{3}$	$\frac{13n-26}{3}$	$\frac{13n-26}{3}$
2-sided	2 <i>n</i> – 4	3 <i>n</i> – 7	4 <i>n</i> – 9	4 <i>n</i> – 9	6 <i>n</i> – 18	8.6 <i>n</i> – 15.6

	2-layer		outer		general	
	LB	UB	LB	UB	LB	UB
1-sided	$\frac{5n-7}{3}$	$\frac{5n-7}{3}$	$\frac{8n-13}{3}$	$\frac{8n-13}{3}$	$\frac{13n-26}{3}$	$\frac{13n-26}{3}$
2-sided	2 <i>n</i> – 4	3 <i>n</i> – 7	4 <i>n</i> – 9	4 <i>n</i> – 9	6 <i>n</i> – 18	8.6 <i>n</i> – 15.6

General:

	2-layer		outer		general	
	LB	UB	LB	UB	LB	UB
1-sided	$\frac{5n-7}{3}$	$\frac{5n-7}{3}$	$\frac{8n-13}{3}$	$\frac{8n-13}{3}$	$\frac{13n-26}{3}$	$\frac{13n-26}{3}$
2-sided	2 <i>n</i> – 4	3 <i>n</i> – 7	4 <i>n</i> – 9	4 <i>n</i> – 9	6 <i>n</i> – 18	8.6 <i>n</i> – 15.6

General:

²⁻layer 1-sided:

