FernUniversität in Hagen
Fakultät für Mathematik und Informatik

theoretische informatik

1-Fan-Bundle-Planar Drawings of Graphs

Patrizio Angelini Michael A. Bekos Michael Kaufmann

Philipp Kindermann Thomas Schneck

Beyond Planarity

Planar

Beyond Planarity

1-planar

Beyond Planarity

2-planar

Beyond Planarity

k-planar

Beyond Planarity

k-planar

Fan-planar

Beyond Planarity

k-planar

Fan-planar

Beyond Planarity

k-planar

Fan-planar

Beyond Planarity

k-planar

Fan-planar

Bundled Edge Drawings

[Holten \& van Wijk '09]

Bundled Edge Drawings

Bundled Edge Drawings

Bundled Edge Drawings

[Ye '17]

k-Fan-Bundle-Planarity

k-Fan-Bundle-Planarity

k-Fan-Bundle-Planarity

k-Fan-Bundle-Planarity

k-Fan-Bundle-Planarity

2-sided

k-Fan-Bundle-Planarity

2-sided

k crossings per bundle

k-Fan-Bundle-Planarity

2-sided

k crossings per bundle

k-Fan-Bundle-Planarity

2-sided

k crossings per bundle

1-Fan-Bundle-Planarity
\longrightarrow Density

k-Fan-Bundle-Planarity

2-sided

k crossings per bundle

1-Fan-Bundle-Planarity \rightarrow Density
\rightarrow Relationships

k-Fan-Bundle-Planarity

k crossings per bundle

1-Fan-Bundle-Planarity \rightarrow Density
\rightarrow Relationships
\rightarrow Recognition

Density

Density: 1-sided

Upper bound: Take maximally dense graph G, make it planar

Density: 1-sided

Upper bound: Take maximally dense graph G, make it planar

Density: 1-sided

Upper bound: Take maximally dense graph G, make it planar

Density: 1-sided

Upper bound: Take maximally dense graph G, make it planar

Density: 1-sided

Upper bound: Take maximally dense graph G, make it planar

Density: 1-sided

Upper bound: Take maximally dense graph G, make it planar

Density: 1-sided

Upper bound: Take maximally dense graph G, make it planar

Density: 1-sided

Upper bound: Take maximally dense graph G, make it planar

Density: 1-sided

Upper bound: Take maximally dense graph G, make it planar

Density: 1-sided

Upper bound: Take maximally dense graph G, make it planar

Density: 1-sided

Upper bound: Take maximally dense graph G, make it planar

Density: 1-sided

Upper bound: Take maximally dense graph G, make it planar

Density: 1-sided

Upper bound: Take maximally dense graph G, make it planar

Density: 1-sided

Upper bound: Take maximally dense graph G, make it planar

Remove 2 edges, create 3 faces

Density: 1-sided

Upper bound: Take maximally dense graph G, make it planar

Remove 2 edges, create 3 faces

Density: 1-sided

Upper bound: Take maximally dense graph G, make it planar

Remove 2 edges, create 3 faces

Density: 1-sided

Upper bound: Take maximally dense graph G, make it planar

Remove 2 edges, create 3 faces

Density: 1-sided

Upper bound: Take maximally dense graph G, make it planar

Remove 2 edges, create 3 faces

Density: 1-sided

Upper bound: Take maximally dense graph G, make it planar

Remove 2 edges, create 3 faces

Density: 1-sided

Upper bound: Take maximally dense graph G, make it planar

Remove 2 edges, create 3 faces

Density: 1-sided

Upper bound: Take maximally dense graph G, make it planar

Remove 2 edges, create 3 faces

Remove 1 edge, create 2 faces

Density: 1-sided

Upper bound: Take maximally dense graph G, make it planar

Remove 2 edges, create 3 faces

Remove 1 edge, create 2 faces
\Rightarrow Planar graph $G^{\prime}, m^{\prime} \leq 3 n-6, f^{\prime} \leq 2 n-4$

Density: 1-sided

Upper bound: Take maximally dense graph G, make it planar

Remove 2 edges, create 3 faces

Remove 1 edge, create 2 faces
\Rightarrow Planar graph $G^{\prime}, m^{\prime} \leq 3 n-6, f^{\prime} \leq 2 n-4$
$\Rightarrow m \leq m^{\prime}+2 f^{\prime} / 3$

Density: 1-sided

Upper bound: Take maximally dense graph G, make it planar

Remove 2 edges, create 3 faces

Remove 1 edge, create 2 faces
\Rightarrow Planar graph $G^{\prime}, m^{\prime} \leq 3 n-6, f^{\prime} \leq 2 n-4$
$\Rightarrow m \leq m^{\prime}+2 f^{\prime} / 3 \leq 3 n-6+2 \cdot(2 n-4) / 3$

Density: 1-sided

Upper bound: Take maximally dense graph G, make it planar

Remove 2 edges, create 3 faces

Remove 1 edge, create 2 faces
\Rightarrow Planar graph $G^{\prime}, m^{\prime} \leq 3 n-6, f^{\prime} \leq 2 n-4$
$\Rightarrow m \leq m^{\prime}+2 f^{\prime} / 3 \leq 3 n-6+2 \cdot(2 n-4) / 3 \leq(13 n-26) / 3$

Density: 1-sided

Upper bound: $(13 n-26) / 3$

Lower bound:

Density: 1-sided

Upper bound: $(13 n-26) / 3$

Lower bound:

Density: 1-sided

Upper bound: $(13 n-26) / 3$

Lower bound:

Density: 1-sided

Upper bound: $(13 n-26) / 3$

Lower bound:

Density: 1-sided

Upper bound: $(13 n-26) / 3$
Lower bound:

Density: 1-sided

Upper bound: $(13 n-26) / 3$
Lower bound:

Density: 1-sided

Upper bound: $(13 n-26) / 3$
Lower bound:

Density: 1-sided

 Upper bound: $(13 n-26) / 3$Lower bound:

Density: 1-sided

Upper bound: $(13 n-26) / 3$
Lower bound: $(5 n-10) / 3$

Density: 1-sided

Upper bound: $(13 n-26) / 3$
Lower bound: $(5 n-10) / 3+4 \cdot(2 n-4) / 3$

Density: 1-sided

Upper bound: $(13 n-26) / 3$
Tight
Lower bound: $(5 n-10) / 3+4 \cdot(2 n-4) / 3=(13 n-26) / 3$

Density: 1-sided

Density: 2-sided

Flower Drawing:

Density: 2-sided

Flower Drawing:

- Vertices on circle

Density: 2-sided

Flower Drawing:

- Vertices on circle
- Every vertex has left and right bundle

$$
0
$$

0

0		
0	0	0
0	0	0

Density: 2-sided

Flower Drawing:

- Vertices on circle
- Every vertex has left and right bundle

Density: 2-sided

Flower Drawing:

- Vertices on circle
- Every vertex has left and right bundle

ヘー

Density: 2-sided

Flower Drawing:

- Vertices on circle
- Every vertex has left and right bundle
- Consecutive bundles cross

20

Density: 2-sided

Flower Drawing:

- Vertices on circle
- Every vertex has left and right bundle
- Consecutive bundles cross

Density: 2-sided

Flower Drawing:

- Vertices on circle
- Every vertex has left and right bundle
- Consecutive bundles cross

Water Lily Drawing:

- Flower Drawing

Density: 2-sided

Flower Drawing:

- Vertices on circle
- Every vertex has left and right bundle
- Consecutive bundles cross

Water Lily Drawing:

- Flower Drawing
- Terminals partitioned into 3 sets

Density: 2-sided

Flower Drawing:

- Vertices on circle
- Every vertex has left and right bundle
- Consecutive bundles cross

Water Lily Drawing:

- Flower Drawing
- Terminals partitioned into 3 sets

Density: 2-sided

Flower Drawing:

- Vertices on circle
- Every vertex has left and right bundle
- Consecutive bundles cross

Water Lily Drawing:

- Flower Drawing
- Terminals partitioned into 3 sets

Density: 2-sided

Flower Drawing:

- Vertices on circle
- Every vertex has left and right bundle
- Consecutive bundles cross

Water Lily Drawing:

- Flower Drawing
- Terminals partitioned into 3 sets

Density: 2-sided

Flower Drawing:

- Vertices on circle
- Every vertex has left and right bundle
- Consecutive bundles cross

Water Lily Drawing:

- Flower Drawing
- Terminals partitioned into 3 sets

Density: 2-sided

Flower Drawing:

- Vertices on circle
- Every vertex has left and right bundle
- Consecutive bundles cross

Water Lily Drawing:

- Flower Drawing
- Terminals partitioned into 3 sets
- Cycle through terminals

Density: 2-sided

Flower Drawing:

- Vertices on circle
- Every vertex has left and right bundle
- Consecutive bundles cross

Water Lily Drawing:

- Flower Drawing
- Terminals partitioned into 3 sets
- Cycle through terminals

Density: 2-sided

Flower Drawing:

- Vertices on circle
- Every vertex has left and right bundle
- Consecutive bundles cross

Water Lily Drawing:

- Flower Drawing
- Terminals partitioned into 3 sets
- Cycle through terminals
- Zigzag pattern in each partition

Density: 2-sided

Flower Drawing:

- Vertices on circle
- Every vertex has left and right bundle
- Consecutive bundles cross

Water Lily Drawing:

- Flower Drawing
- Terminals partitioned into 3 sets
- Cycle through terminals
- Zigzag pattern in each partition

Density: 2-sided

Flower Drawing:

- Vertices on circle
- Every vertex has left and right bundle
- Consecutive bundles cross

Water Lily Drawing:

- Flower Drawing
- Terminals partitioned into 3 sets
- Cycle through terminals
- Zigzag pattern in each partition

Density: 2-sided

Flower Drawing:

- Vertices on circle
- Every vertex has left and right bundle
- Consecutive bundles cross

Water Lily Drawing:

- Flower Drawing
- Terminals partitioned into 3 sets
- Cycle through terminals
- Zigzag pattern in each partition

Density: 2-sided

Flower Drawing:

- Vertices on circle
- Every vertex has left and right bundle
- Consecutive bundles cross

Water Lily Drawing:

- Flower Drawing
- Terminals partitioned into 3 sets
- Cycle through terminals
- Zigzag pattern in each partition

Density: 2-sided

Water Lily Drawings have $4 n-9$ edges

Density: 2-sided

Water Lily Drawings have $4 n-9$ edges \Rightarrow LB for outer-2-sided: $4 n-9$

Density: 2-sided

Water Lily Drawings have $4 n-9$ edges \Rightarrow LB for outer-2-sided: $4 n-9$

Merge 2 Water Lilys
\Rightarrow LB for 2-sided: $6 n-18$

Density: 2-sided

Water Lily Drawings have $4 n-9$ edges \Rightarrow LB for outer-2-sided: $4 n-9$

Merge 2 Water Lilys
\Rightarrow LB for 2-sided: $6 n-18$

Density: 2-sided

Water Lily Drawings have $4 n-9$ edges \Rightarrow LB for outer-2-sided: $4 n-9$

Merge 2 Water Lilys
\Rightarrow LB for 2-sided: $6 n-18$

\Rightarrow LB for 2-layer 2-sided: $2 n-4$

Density

xराया

	2-layer		outer		general	
	LB	UB	LB	UB	LB	UB
1-sided	$\frac{5 n-7}{3}$	$\frac{5 n-7}{3}$	$\frac{8 n-13}{3}$	$\frac{8 n-13}{3}$	$\frac{13 n-26}{3}$	$\frac{13 n-26}{3}$
2-sided	$2 n-4$		$4 n-9$		$6 n-18$	

Density

x xराx

	2-layer		outer		general	
	LB	UB	LB	UB	LB	UB
1-sided	$\frac{5 n-7}{3}$	$\frac{5 n-7}{3}$	$\frac{8 n-13}{3}$	$\frac{8 n-13}{3}$	$\frac{13 n-26}{3}$	$\frac{13 n-26}{3}$
2-sided	$2 n-4$	$3 n-7$	$4 n-9$		$6 n-18$	

Density

x xराx

	2-layer		outer		general	
		UB		UB	LB	UB
1 -sided	$\frac{5 n-7}{3}$	$\frac{5 n-7}{3}$	$\frac{8 n-13}{3}$	$\frac{8 n-13}{3}$	$\frac{13 n-26}{3}$	$\frac{13 n-26}{3}$
2-sided	$2 n-4$	$3 n-7$	$4 n-9$	4n-9	$6 n-18$	
	sx	Kx				

Density

xराया

	2-layer		outer		general	
	LB	UB	LB	UB	LB	UB
1-sided	$\frac{5 n-7}{3}$	$\frac{5 n-7}{3}$	$\frac{8 n-13}{3}$	$\frac{8 n-13}{3}$	$\frac{13 n-26}{3}$	$\frac{13 n-26}{3}$
2-sided	$2 n-4$	$3 n-7$	$4 n-9$	$4 n-9$	$6 n-18$	$8.6 n-15.6$

Relationships

Relationships

PLANAR

Relationships

- K K_{4} PLANAR

Relationships

- $K_{4} \quad$ PLANAR
1-PLANAR

Relationships

- K K_{4} PLANAR
- K_{6} 1-PLANAR

Relationships

- K 4 PLANAR
- K_{6} 1-PLANAR

2-PLANAR

Relationships

- K K_{4} PLANAR
- K_{6} 1-PLANAR
- $K_{3,10}$

2-PLANAR

Relationships

- $K_{4} \quad$ PLANAR
- K_{6} 1-PLANAR
- $K_{3,10}$

2-PLANAR

FAN-PLANAR

Relationships

- K K_{4} PLANAR
- $K_{4, n-4}$
- K_{6} 1-PLANAR
- $K_{3,10}$

2-PLANAR

FAN-PLANAR

Relationships

- $K_{4} \quad$ PLANAR
- $K_{4, n-4}$
- K_{6} 1-PLANAR
- $K_{3,10}$ [Binucci et al.]

FAN-PLANAR

Relationships

- $K_{4} \quad$ PLANAR
- $K_{4, n-4}$
- K_{6} 1-PLANAR
- $K_{3,10}$

2-PLANAR

1-SIDED 1-FBP

FAN-PLANAR

Relationships

- $K_{4} \quad$ PLANAR
- ${ }_{6}$ 1-PLANAR
$\cdot ?$
- $K_{3,10}$?

2-PLANAR
-? 1-SIDED 1-FBP
FAN-PLANAR
$K_{3,14}$

$$
0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0
$$

○
○
o
$K_{3,14}$

$K_{3,14}$

$K_{3,14}$

$K_{3,14}$

$K_{3,14}$

$K_{3,14}$

$K_{3,14}$

$K_{3,14}$

Relationships

- $K_{4} \quad$ PLANAR
- ${ }_{6}$ 1-PLANAR
$\cdot ?$
- $K_{3,10}$?

2-PLANAR
-? 1-SIDED 1-FBP
FAN-PLANAR

Relationships

- $K_{4} \quad$ PLANAR
- ${ }_{6}$ 1-PLANAR
-?
- $K_{3,10}$

2-PLANAR
-? 1-SIDED 1-FBP
FAN-PLANAR

Relationships

- $K_{4} \quad$ PLANAR
- K_{6} 1-PLANAR
\cdot ?
- $K_{3,10}$

2-PLANAR

- K K 3,14 1-SIDED 1-FBP

FAN-PLANAR

Relationships

- $K_{4} \quad$ PLANAR
- K_{6} 1-PLANAR
- D_{12}
- $K_{3,10}$

2-PLANAR

- $K_{3,14}$ 1-SIDED 1-FBP

FAN-PLANAR

Relationships

- $K_{4} \quad$ PLANAR
- K_{6} 1-PLANAR
- D_{12}
- $K_{3,10}$

2-PLANAR

- $K_{3,14}$ 1-SIDED 1-FBP

FAN-PLANAR $\cdot \bar{K}_{4,12}$
.?
2-SIDED 1-FBP
K_{9}
o
○
0
$0 \quad 0 \quad 0$

0
0
0
K_{9}

K_{9}

Relationships

- K $K_{4} \quad$ PLANAR \quad [Binucci et al.]
- $K_{4, n-4}$?
- K_{6} 1-PLANAR
- D_{12}
- $K_{3,10}$

2-PLANAR

- $K_{3,14}$ 1-SIDED 1-FBP

FAN-PLANAR $\cdot \bar{K}_{4,12}$
.?
2-SIDED 1-FBP

Relationships

- K $K_{4} \quad$ PLANAR \quad [Binucci et al.]
- $K_{4, n-4}$?
- K_{6} 1-PLANAR
- D_{12}
- $K_{3,10}$

2-PLANAR

- $K_{3,14}$ 1-SIDED 1-FBP

FAN-PLANAR $\cdot \bar{K}_{4,12}$
. K9
2-SIDED 1-FBP

Relationships

- K $K_{4} \quad$ PLANAR \quad [Binucci et al.]
- K_{6} 1-PLANAR
- D_{12}
- $K_{3,10}$

2-PLANAR

- K K 3,14 1-SIDED 1-FBP

FAN-PLANAR $\cdot \bar{K}_{4,12}$
. K9
2-SIDED 1-FBP

Recognition

Recognition: general

Recognition: 2-layer 1-sided

Recognition: 2-layer 1-sided

$K_{2,3}$ is drawable

Recognition: 2-layer 1-sided

$K_{2,3}$ is drawable

... but $K_{2,4}$ is not!

Recognition: 2-layer 1-sided

$K_{2,3}$ is drawable

... but $K_{2,4}$ is not!

[Binucci et al.]

Recognition: 2-layer 1-sided

$K_{2,3}$ is drawable

... but $K_{2,4}$ is not!

[Binucci et al.]

Recognition: 2-layer 1-sided

$K_{2,3}$ is drawable

... but $K_{2,4}$ is not!

[Binucci et al.]

Recognition: 2-layer 1-sided

$K_{2,3}$ is drawable

... but $K_{2,4}$ is not!

[Binucci et al.]
Max. bicon. fan-planar:

Recognition: 2-layer 1-sided

$K_{2,3}$ is drawable
 ... but $K_{2,4}$ is not!

[Binucci et al.]
Max. bicon. fan-planar:

Recognition: 2-layer 1-sided

$K_{2,3}$ is drawable

 ... but $K_{2,4}$ is not!

[Binucci et al.]
Max. bicon. fan-planar:

Recognition: 2-layer 1-sided

$K_{2,3}$ is drawable

 ... but $K_{2,4}$ is not!

[Binucci et al.]
Max. bicon. fan-planar:

Recognition: 2-layer 1-sided

$K_{2,3}$ is drawable

 ... but $K_{2,4}$ is not!

[Binucci et al.]
Max. bicon. fan-planar:

Max. bicon. 1-sided 1-fbp:

Recognition: 2-layer 1-sided

Big Legs

Recognition: 2-layer 1-sided

Big Legs

Recognition: 2-layer 1-sided

Recognition: 2-layer 1-sided

Recognition: 2-layer 1-sided

Recognition: 2-layer 1-sided

Big Legs

Recognition: 2-layer 1-sided

Big Legs

Recognition: 2-layer 1-sided

Recognition: 2-layer 1-sided

Summary

	2-layer		outer		general	
	LB	UB	LB	UB	LB	UB
1-sided	$\frac{5 n-7}{3}$	$\frac{5 n-7}{3}$	$\frac{8 n-13}{3}$	$\frac{8 n-13}{3}$	$\frac{13 n-26}{3}$	$\frac{13 n-26}{3}$
2-sided	$2 n-4$	$3 n-7$	$4 n-9$	$4 n-9$	$6 n-18$	$8.6 n-15.6$

Summary

	2-layer		outer		general	
	LB	UB	LB	UB	LB	UB
1-sided	$\frac{5 n-7}{3}$	$\frac{5 n-7}{3}$	$\frac{8 n-13}{3}$	$\frac{8 n-13}{3}$	$\frac{13 n-26}{3}$	$\frac{13 n-26}{3}$
2-sided	$2 n-4$	$3 n-7$	$4 n-9$	$4 n-9$	$6 n-18$	$8.6 n-15.6$

Summary

	2-layer		outer		general	
	LB	UB	LB	UB	LB	UB
1-sided	$\frac{5 n-7}{3}$	$\frac{5 n-7}{3}$	$\frac{8 n-13}{3}$	$\frac{8 n-13}{3}$	$\frac{13 n-26}{3}$	$\frac{13 n-26}{3}$
2-sided	$2 n-4$	$3 n-7$	$4 n-9$	$4 n-9$	$6 n-18$	$8.6 n-15.6$

General:

Summary

	2-layer		outer		general	
	LB	UB	LB	UB	LB	UB
1-sided	$\frac{5 n-7}{3}$	$\frac{5 n-7}{3}$	$\frac{8 n-13}{3}$	$\frac{8 n-13}{3}$	$\frac{13 n-26}{3}$	$\frac{13 n-26}{3}$
2-sided	$2 n-4$	$3 n-7$	$4 n-9$	$4 n-9$	$6 n-18$	$8.6 n-15.6$

General:

2-layer 1-sided:

