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Cased Drawings

• Many graphs need crossings.

Crossings impede readability⇒Make crossings nice.

Edge casings:
at each crossing insert a small gap into one of the edges.
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edge is assigned≤ k crossings.
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k-Gap Planarity

We restrict the number of gaps per edge:

• Gap assignment assigns each
crossing to one of its edges.

• Drawing Γ is k-gap planar if each
edge is assigned≤ k crossings.

• Graph G is k-gap planar if it has a
k-gap planar drawing.

Questions:
• What is the maxium density of k-gap planar graphs?

• Which graphs are k-gap planar? Can we recognize them?

• What is the relation to k-planarity? To k-quasiplanarity?

k=2
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Let Γ be a k-gap planar drawing of G = (V ,E ). For any
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Density of k-Gap Planar Graphs

Corollary.
For a k-gap planar graph G with m edges it is cr(G ) ≤ k ·m.

Lemma.
Let Γ be a k-gap planar drawing of G = (V ,E ). For any
E ′ ⊆ E , Γ[E ′] contains at most k · |E ′| crossings.

Theorem.
k-gap planar graphs on n vertices have O(

√
k · n) edges.

Proof.
Crossing lemma: cr(G ) ∈ Ω(

m3

n2
), i.e. cr(G ) ≥ c ·m3/n2.

⇒ c ·m3/n2 ≤ cr(G ) ≤ k ·m
⇒ m ≤

√
c/c ·

√
k · n

What are the constants for 1-gap planar?

This is
asymptotica

lly tigh
t.
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Density of 1-Gap Planar Graphs

Theorem.
A 1-gap planar graph on n vertices has≤ 5n − 10 edges.
A 1-gap planar graph with 5n − 10 edges exists for all n ≥ 20.

In each face:

Possibly nest the construction.

Lower bound:



Upper Bound

Let G be a 1-gap-planar multigraph on n ≥ 3 vertices without
homotopic parallel edges that has maximum number of edges.

• Fix a 1-gap-planar drawing Γ minimizing crossings.
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• Tie breaker: Minimize connected components of H.
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Upper Bound

Let G be a 1-gap-planar multigraph on n ≥ 3 vertices without
homotopic parallel edges that has maximum number of edges.

• Fix a 1-gap-planar drawing Γ minimizing crossings.

• Pick maximum H ⊆ G with edges pairwise non-crossing.

• Tie breaker: Minimize connected components of H.

If H happens to be a triangulation spanning V (G ):

Charge edges
e ∈ E (G ) \ E (H) to faces:

• face containing end of e
but no gap

• otherwise choose
uncharged face

⇒ |E (H)| = 3n − 6, |E (G ) \ E (H)| ≤ 2n − 4
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Lemma.
H happens to be a triangulation spanning V (G ).

We start with a few basic observations.

All cases lead to a contradiction. Therefore, our initial
assumption must be dropped, consequently the multigraph H
is a triangulation, as claimed.
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Complete Graphs

Theorem.
The complete graph Kn is 1-gap planar if and only if n ≤ 8.

Proof.
K8

cr(K10) > 45 ⇒ not 1-gap planar

But cr(K9) = 36 = |E (K9)|. . .

Assume Γ is a 1-gap planar drawing of K9.

Consider planarization Γ? of Γ:
• |V (Γ?)| = 9 + 36 = 45, |E (Γ?)| = (9 · 8 + 36 · 4)/2 = 108

• ⇒ Γ? has 65 faces.
Two real vertices u and v share a face in Γ?:
• Each real vertex is incident to 8 faces, but there are less

than 9 · 8 = 72 faces.

• Can redraw edge uv without crossings.
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Complete Bipartite Graphs
K4,8 K3,12

• K3,13?

• K4,9?

• K6,6?

K5,6
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Reduction from 3-PARTITION:
Given a1 . . . , a3m form triples whose sum is B?

B



Reduction

π2

π3

a b

α β

β

B crossing pairs

ai

• Route m paths of length (3m − 3) · B + B

Reduction from 3-PARTITION:
Given a1 . . . , a3m form triples whose sum is B?

• Each path has to pick up ai ’s summing to (at most) B.

π1

B
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Relation to other Graph Classes

Theorem.
For every k ≥ 1 the following holds.

(2k)-PLANAR ( k-GAP-PLANAR ( (2k + 2)-QUASIPLANAR

k-GAP-PLANAR ⊆ (2k + 2)-QUASIPLANAR:

• drawing Γ is q-quasiplanar⇔ no subset of q edges has(
q
2

)
= q · (q − 1)/2 crossings

• Drawing Γ is k-gap⇒ any q edges induce≤ k · q crossings

⇒ k-gap planar drawing is q-quasiplanar if (q − 1)/2 > k,
i.e., q > 2k + 1.
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but not k-gap planar.

Start with K3,3:

• Replace each by ...

}
19k times

• Resulting graph G is quasiplanar



Relation to Quasiplanarity

Lemma.
For every k ≥ 1 there exists a graph that is (3-)quasiplanar
but not k-gap planar.

Start with K3,3:

• Replace each by ...

}
19k times

• Resulting graph G is quasiplanar

• But not k-gap planar:
– choose one path per edge of K3,3 (19k)9 crossings.
– each crossing counted (19k)7 times.
– ⇒ cr(G ) > (19k)2 > 9 · 19 · 2k = |E (G )| · k
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H has a matching of A into B.

A: crossings B: edges (k vertices per edge)

A′

• A′ incident to 2k|A′| edges.
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Relation to k-Planarity

Lemma.
Every 2k-planar drawing is k-gap planar.

∃ k-gap assignment
⇔

H has a matching of A into B.

Hence a k-gap assignment exists by Hall’s theorem.

A: crossings B: edges (k vertices per edge)

A′

• A′ incident to 2k|A′| edges.
• Vertices in B have degree≤ 2k.
⇒ |B ′| ≥ |A′|.

B ′ = N(A′)
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Replace each gray edge
by t = 5(k + 1)4 parallel
paths of length 2.



Relation to k-planarity

Lemma.
For every k ≥ 1 there exists a 1-gap planar graph that is not
k-planar.

Replace each gray edge
by t = 5(k + 1)4 parallel
paths of length 2.

• In a k-planar drawing, we can pick (k + 1) paths for each
edge such that paths of different edges do not cross.

• Wheel must be drawn as in the picture.

• Red edge has≥ k + 1 crossings.
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Gap planarity is a new beyond planarity concept:

• Density: linear, 5n − 10 for 1-gap planar

• Complete graphs: up to n − 8

• Complexity: NP-hard (even with fixed rotation scheme)

• Interesting relation with k-planar graphs:

– 2k-planar graphs are k-gap planar
– 1-gap planar graphs are not k-planar for any k



Conclusion
Gap planarity is a new beyond planarity concept:

• Density: linear, 5n − 10 for 1-gap planar

• Complete graphs: up to n − 8

• Complexity: NP-hard (even with fixed rotation scheme)

• Interesting relation with k-planar graphs:

– 2k-planar graphs are k-gap planar
– 1-gap planar graphs are not k-planar for any k

Questions:

• Which complete bipartite graphs are 1-gap planar?

• Complexity of outer-k-gap-planarity?

• Do 1-gap planar drawings have RAC drawings with few
bends?


