Gap-Planar Graphs

Sang Won Bae, Jean-Francois Baffier, Jinhee Chun, Peter Eades, Kord Eickmeyer, Luca Grilli, Seok-Hee Hong, Matias Korman, Fabrizio Montecchiani, Ignaz Rutter, Csaba D. Tóth

Graph Drawing • September 27, 2017

Cased Drawings

- Many graphs need crossings.

Crossings impede readability \Rightarrow Make crossings nice.

Cased Drawings

- Many graphs need crossings.

Crossings impede readability \Rightarrow Make crossings nice.

Edge casings:
at each crossing insert a small gap into one of the edges.

k-Gap Planarity

We restrict the number of gaps per edge:

- Gap assignment assigns each crossing to one of its edges.
- Drawing Γ is k-gap planar if each edge is assigned $\leq k$ crossings.

k-Gap Planarity

We restrict the number of gaps per edge:

- Gap assignment assigns each crossing to one of its edges.
- Drawing Γ is k-gap planar if each edge is assigned $\leq k$ crossings.
- Graph G is k-gap planar if it has a k-gap planar drawing.

k-Gap Planarity

We restrict the number of gaps per edge:

- Gap assignment assigns each crossing to one of its edges.
- Drawing Γ is k-gap planar if each edge is assigned $\leq k$ crossings.
- Graph G is k-gap planar if it has a k-gap planar drawing.

Questions:

- What is the maxium density of k-gap planar graphs?
- Which graphs are k-gap planar? Can we recognize them?
- What is the relation to k-planarity? To k-quasiplanarity?

Related Work

Edge casings: [Eppstein, van Kreveld, Mumford, Speckmann, GD '07] optimize casings in a given drawing:

- Optimize tunnels (= gaps) and switches
- Stacking and weaving model
$O\left(m^{4}\right)$-algorithm for minimizing maximum number of gaps.

Related Work

Edge casings: [Eppstein, van Kreveld, Mumford, Speckmann, GD '07] optimize casings in a given drawing:

- Optimize tunnels (= gaps) and switches
- Stacking and weaving model
$O\left(m^{4}\right)$-algorithm for minimizing maximum number of gaps.
Near-planarity:
- k-planar graphs
[Pach, Tóth'97, Bekos, Kaufmann, Raftopoulou' 16, Kobourov, Liotta, Montecchiani'17]
- k-quasiplanar graphs [Agarwal, Aronov, Pach, Pollack, Sharir '97, Ackerman, Tardos '07, Fox, Pach, Suk, '13]
- fan-planarity [Kaufmann, Ueckerdt'14, Binucci, Di Giacomo, Didimo, Montecchiani, Patrignani, Symvonis, Tollis '15, Bekos, Cornelsen, Grilli, Hong, Kaufmann '16]

Related Work

Edge casings: [Eppstein, van Kreveld, Mumford, Speckmann, GD '07] optimize casings in a given drawing:

- Optimize tunnels (= gaps) and switches
- Stacking and weaving model
$O\left(m^{4}\right)$-algorithm for minimizing maximum number of gaps.
Near-planarity:
- k-planar graphs
[Pach, Tóth'97, Bekos, Kaufmann, Raftopoulou' 16, Kobourov, Liotta, Montecchiani'17]
- k-quasiplanar graphs
[Agarwal, Aronov, Pach, Pollack, Sharir '97, Ackerman, Tardos '07, Fox, Pach, Suk, '13]
- fan-planarity [Kaufmann, Ueckerdt'14, Binucci, Di Giacomo, Didimo, Montecchiani, Patrignani, Symvonis, Tollis '15, Bekos, Cornelsen, Grilli, Hong, Kaufmann '16]
- fan-crossing-freeness
- RAC drawings
[Cheong, Har-Peled, Kim, Kim '13]
[Didimo, Liotta '12]

Related Work

Edge casings: [Eppstein, van Kreveld, Mumford, Speckmann, GD '07] optimize casings in a given drawing:

- Optimize tunnels (= gaps) and switches
- Stacking and weaving model
$O\left(m^{4}\right)$-algorithm for minimizing maximum number of gaps.
Near-planarity:
- k-planar graphs
[Pach, Tóth’97, Bekos, Kaufmann, Raftopoulou' 16, Kobourov, Liotta, Montecchiani'17]
- k-quasiplanar graphs
[Agarwal, Aronov, Pach, Pollack, Sharir '97, Ackerman, Tardos '07, Fox, Pach, Suk, '13]
- fan-planarity [Kaufmann, Ueckerdt'14, Binucci, Di Giacomo, Didimo, Montecchiani, Patrignani, Symvonis, Tollis '15, Bekos, Cornelsen, Grilli, Hong, Kaufmann '16]
- fan-crossing-freeness
[Cheong, Har-Peled, Kim, Kim '13]
- RAC drawings

Outline

1. Density of k-gap planar graphs
2. Complete (bipartite) graphs
3. Complexity of recognizing 1-gap planar graphs
4. Relation to other graph classes

Outline

1. Density of k-gap planar graphs
2. Complete (bipartite) graphs
3. Complexity of recognizing 1-gap planar graphs
4. Relation to other graph classes

Density of k-Gap Planar Graphs

Lemma.

Let Γ be a k-gap planar drawing of $G=(V, E)$. For any $E^{\prime} \subseteq E, \Gamma\left[E^{\prime}\right]$ contains at most $k \cdot\left|E^{\prime}\right|$ crossings.

Density of k-Gap Planar Graphs

Lemma.

Let Γ be a k-gap planar drawing of $G=(V, E)$. For any $E^{\prime} \subseteq E, \Gamma\left[E^{\prime}\right]$ contains at most $k \cdot\left|E^{\prime}\right|$ crossings.

Corollary.

For a k-gap planar graph G with m edges it is $\operatorname{cr}(G) \leq k \cdot m$.

Density of k-Gap Planar Graphs

Lemma.

Let Γ be a k-gap planar drawing of $G=(V, E)$. For any $E^{\prime} \subseteq E, \Gamma\left[E^{\prime}\right]$ contains at most $k \cdot\left|E^{\prime}\right|$ crossings.

Corollary.

For a k-gap planar graph G with m edges it is $\operatorname{cr}(G) \leq k \cdot m$.
Theorem. k-gap planar graphs on n vertices have $O(\sqrt{k} \cdot n)$ edges.

Density of k-Gap Planar Graphs

Lemma.

Let Γ be a k-gap planar drawing of $G=(V, E)$. For any $E^{\prime} \subseteq E, \Gamma\left[E^{\prime}\right]$ contains at most $k \cdot\left|E^{\prime}\right|$ crossings.

Corollary.

For a k-gap planar graph G with m edges it is $\operatorname{cr}(G) \leq k \cdot m$.
Theorem.
k-gap planar graphs on n vertices have $O(\sqrt{k} \cdot n)$ edges.
Proof.
Croossing lemma: $\operatorname{cr}(G) \in \Omega\left(\frac{m^{3}}{n^{2}}\right)$, i.e. $\operatorname{cr}(G) \geq c \cdot m^{3} / n^{2}$.
$\Rightarrow c \cdot m^{3} / n^{2} \leq \operatorname{cr}(G) \leq k \cdot m$
$\Rightarrow m \leq \sqrt{c} / c \cdot \sqrt{k} \cdot n$

Density of k-Gap Planar Graphs

Lemma.

Let Γ be a k-gap planar drawing of $G=(V, E)$. For any $E^{\prime} \subseteq E, \Gamma\left[E^{\prime}\right]$ contains at most $k \cdot\left|E^{\prime}\right|$ crossings.

Corollary.

For a k-gap planar graph G with m edges it is $\operatorname{cr}(G) \leq k \cdot m$.
Theorem.
k-gap planar graphs on n vertices have $O(\sqrt{k} \cdot n)$ edges.
Proof.
Crossing lemma: $\operatorname{cr}(G) \in \Omega\left(\frac{m^{3}}{}\right.$, .
$\Rightarrow c \cdot m^{3} / n^{2}$. This is asymptotically tight. $: m^{3} / n^{2}$.
$\Rightarrow m \leq \sqrt{c}$ This n
What are the constants for 1-gap planar?

Density of 1-Gap Planar Graphs

Theorem.

A 1-gap planar graph on n vertices has $\leq 5 n-10$ edges. A 1-gap planar graph with $5 n-10$ edges exists for all $n \geq 20$.

Density of 1-Gap Planar Graphs

Theorem.
A 1-gap planar graph on n vertices has $\leq 5 n-10$ edges. A 1-gap planar graph with $5 n-10$ edges exists for all $n \geq 20$.

Lower bound:

Density of 1-Gap Planar Graphs

Theorem.

A 1-gap planar graph on n vertices has $\leq 5 n-10$ edges. A 1-gap planar graph with $5 n-10$ edges exists for all $n \geq 20$.

Density of 1-Gap Planar Graphs

Theorem.

A 1-gap planar graph on n vertices has $\leq 5 n-10$ edges. A 1-gap planar graph with $5 n-10$ edges exists for all $n \geq 20$.

Density of 1-Gap Planar Graphs

Theorem.

A 1-gap planar graph on n vertices has $\leq 5 n-10$ edges. A 1-gap planar graph with $5 n-10$ edges exists for all $n \geq 20$.

Lower bound:

Upper Bound

Let G be a 1-gap-planar multigraph on $n \geq 3$ vertices without homotopic parallel edges that has maximum number of edges.

- Fix a 1-gap-planar drawing Γ minimizing crossings.
- Pick maximum $H \subseteq G$ with edges pairwise non-crossing.
- Tie breaker: Minimize connected components of H.

Upper Bound

Let G be a 1-gap-planar multigraph on $n \geq 3$ vertices without homotopic parallel edges that has maximum number of edges.

- Fix a 1-gap-planar drawing Γ minimizing crossings.
- Pick maximum $H \subseteq G$ with edges pairwise non-crossing.
- Tie breaker: Minimize connected components of H.

If H happens to be a triangulation spanning $V(G)$:

Charge edges
$e \in E(G) \backslash E(H)$ to faces:

- face containing end of e but no gap
- otherwise choose uncharged face

Upper Bound

Let G be a 1-gap-planar multigraph on $n \geq 3$ vertices without homotopic parallel edges that has maximum number of edges.

- Fix a 1-gap-planar drawing Γ minimizing crossings.
- Pick maximum $H \subseteq G$ with edges pairwise non-crossing.
- Tie breaker: Minimize connected components of H.

If H happens to be a triangulation spanning $V(G)$:

Charge edges
$e \in E(G) \backslash E(H)$ to faces:

- face containing end of e but no gap
- otherwise choose uncharged face

Upper Bound

Let G be a 1-gap-planar multigraph on $n \geq 3$ vertices without homotopic parallel edges that has maximum number of edges.

- Fix a 1-gap-planar drawing Γ minimizing crossings.
- Pick maximum $H \subseteq G$ with edges pairwise non-crossing.
- Tie breaker: Minimize connected components of H.

If H happens to be a triangulation spanning $V(G)$:

Charge edges
$e \in E(G) \backslash E(H)$ to faces:

- face containing end of e but no gap
- otherwise choose uncharged face

Upper Bound

Let G be a 1-gap-planar multigraph on $n \geq 3$ vertices without homotopic parallel edges that has maximum number of edges.

- Fix a 1-gap-planar drawing Γ minimizing crossings.
- Pick maximum $H \subseteq G$ with edges pairwise non-crossing.
- Tie breaker: Minimize connected components of H.

If H happens to be a triangulation spanning $V(G)$:

Charge edges
$e \in E(G) \backslash E(H)$ to faces:

- face containing end of e but no gap
- otherwise choose uncharged face

Upper Bound

Let G be a 1-gap-planar multigraph on $n \geq 3$ vertices without homotopic parallel edges that has maximum number of edges.

- Fix a 1-gap-planar drawing Γ minimizing crossings.
- Pick maximum $H \subseteq G$ with edges pairwise non-crossing.
- Tie breaker: Minimize connected components of H.

If H happens to be a triangulation spanning $V(G)$:

Charge edges
$e \in E(G) \backslash E(H)$ to faces:

- face containing end of e but no gap
- otherwise choose uncharged face

$$
\Rightarrow|E(H)|=3 n-6,|E(G) \backslash E(H)| \leq 2 n-4
$$

Lemma.
 H happens to be a triangulation spanning $V(G)$.

Lemma.
 H happens to be a triangulation spanning $V(G)$.

We start with a few basic observations.


```
Proof. Suppose, to the contrary, that \(G\) is disconnected. Let \(G_{1}=\left(V_{1}, E_{1}\right)\) be For \(i=1,2\), let \(\Gamma_{i}\) be the drawing of \(G_{i}\) inherited from \(G\), and let \(\Gamma_{i}^{*}\) be its planarization.
\({ }^{2} J_{2}\) be a face in \(\Gamma_{2}^{*}\) incident to some vertex \(v_{2} \in V_{2}\). Apply a projective followed by an affine transformation that maps \(\Gamma_{1}\) into the interior of face \(f_{2}\). Now we can add a new edge ( \(\left(v_{1}, v_{2}\right)\), contradicting the maximality of \(G\).
Since G is connected, every face in the planarization \mp@subsup{\Gamma}{}{*}\mathrm{ of }\Gamma\mathrm{ has a connected}
such that f lies on the left hand side of each edge ( (a, , , i+1)
and every two consecutive edges of the walk,( (ai-1, ,ai) and ( (a,\mp@subsup{a}{i}{},\mp@subsup{a}{i+1}{*})\mathrm{ , are also}
denote the set of faces in the planarization }\mp@subsup{\Gamma}{}{\star}\mathrm{ that are not incident to any vertex
Lemma 9. If f}\in\mp@subsup{F}{0}{}\mathrm{ , then the boundary walk of f is
1. a simple cycle (i.e., has no repeated vertices) with at least 3 vertices;
```



```
Prof. 1. Let f\in Fo, and let w={\mp@subsup{a}{1}{},\mp@subsup{a}{2}{},\ldots,\mp@subsup{a}{\ell}{\prime})\mathrm{ be its boundary walk for some}
l
and then w has no repeated vertices, hence it is a simple cycle.
all vertices, in the contrary, that the vertices in w}\mathrm{ are not distinct. Since f}\in\mp@subsup{F}{0}{}
allortices in w}\mathrm{ are crossings in the drawing }\Gamma\mathrm{ , consequently they alc have
be consecutive vertices in w, and two pairs of egges from (a, (ail, ,\mp@subsup{a}{i}{}),(,, (a,\mp@subsup{a}{i+1}{*}),
*)
is a 1-gap-planar drawing
2. Let }\mp@subsup{f}{1}{},\mp@subsup{f}{2}{}\in\mp@subsup{F}{0}{}\mathrm{ be two faces, with boundary walks w
Ci
the edges of the walk wi
```


Lemma.
 H happens to be a triangulation spanning $V(G)$.

We start with a few basic observations.
We mart with a few basic observations.T

Lemma.
 H happens to be a triangulation spanning $V(G)$.

We start with a few basic observations.

Lemma.
 H happens to be a triangulation spanning $V(G)$.

We start with a few basic observations.

Lemma.

H happens to be a triangulation spanning $V(G)$.
We start with a few basic observations.

All cases lead to a contradiction. Therefore, our initial assumption must be dropped, consequently the multigraph H is a triangulation, as claimed.

Outline

1. Density of k-gap planar graphs
2. Complete (bipartite) graphs
3. Complexity of recognizing 1-gap planar graphs
4. Relation to other graph classes

Complete Graphs

Theorem.

The complete graph K_{n} is 1-gap planar if and only if $n \leq 8$.
Proof. $\operatorname{cr}\left(K_{10}\right)>45 \Rightarrow$ not 1-gap planar But cr $\left(K_{9}\right)=36=\left|E\left(K_{9}\right)\right| \ldots$

Complete Graphs

Theorem.

The complete graph K_{n} is 1-gap planar if and only if $n \leq 8$.
Proof. $\operatorname{cr}\left(K_{10}\right)>45 \Rightarrow$ not 1-gap planar But cr $\left(K_{9}\right)=36=\left|E\left(K_{9}\right)\right| \ldots$

Assume Γ is a 1-gap planar drawing of K_{9}. Consider planarization Γ^{\star} of Γ :

- $\left|V\left(\Gamma^{\star}\right)\right|=9+36=45,\left|E\left(\Gamma^{\star}\right)\right|=(9 \cdot 8+36 \cdot 4) / 2=108$
- $\Rightarrow \Gamma^{\star}$ has 65 faces.

Complete Graphs

Theorem.

The complete graph K_{n} is 1-gap planar if and only if $n \leq 8$.
Proof. $\operatorname{cr}\left(K_{10}\right)>45 \Rightarrow$ not 1-gap planar
But cr $\left(K_{9}\right)=36=\left|E\left(K_{9}\right)\right| \ldots$
Assume Γ is a 1-gap planar drawing of K_{9}.
Consider planarization Γ^{\star} of Γ :

- $\left|V\left(\Gamma^{\star}\right)\right|=9+36=45,\left|E\left(\Gamma^{*}\right)\right|=(9 \cdot 8+36 \cdot 4) / 2=108$
- $\Rightarrow \Gamma^{\star}$ has 65 faces.

Two real vertices u and v share a face in Γ^{\star} :

- Each real vertex is incident to 8 faces, but there are less than $9 \cdot 8=72$ faces.
- Can redraw edge $u v$ without crossings.

Complete Bipartite Graphs

Complete Bipartite Graphs

Complete Bipartite Graphs

Complete Bipartite Graphs

- $K_{3,13}$?
- $K_{4,9}$?
- $K_{6,6}$?

Outline

1. Density of k-gap planar graphs
2. Complete (bipartite) graphs
3. Complexity of recognizing 1-gap planar graphs
4. Relation to other graph classes

Recognition

Theorem.

Testing 1-gap planarity is NP-complete.

Recognition

Theorem.

Testing 1-gap planarity is NP-complete.
Even with a fixed rotation scheme.

Recognition

Theorem.

Testing 1-gap planarity is NP-complete.
Even with a fixed rotation scheme.

drawing contains two edge-disjoint
$u v$-paths using only parts of gapped edges.

Recognition

Theorem.

Testing 1-gap planarity is NP-complete. Even with a fixed rotation scheme.

Every drawing contains two edge-disjoint $u v$-paths using only parts of gapped edges.

Recognition

Theorem.

Testing 1-gap planarity is NP-complete. Even with a fixed rotation scheme.

Every drawing contains two edge-disjoint $u v$-paths using only parts of gapped edges.

Recognition

Theorem.

Testing 1-gap planarity is NP-complete.
Even with a fixed rotation scheme.

Every drawing contains two edge-disjoint $u v$-paths using only parts of gapped edges.

Recognition

Theorem.

Testing 1-gap planarity is NP-complete.
Even with a fixed rotation scheme.

Every drawing contains two edge-disjoint $u v$-paths using only parts of gapped edges.

Reduction

Reduction from 3-PARTITION:

Given $a_{1} \ldots, a_{3 m}$ form triples whose sum is B ?

Reduction

Reduction from 3-PARTITION:
 Given $a_{1} \ldots, a_{3 m}$ form triples whose sum is B ?

Reduction

Reduction from 3-PARTITION:

Given $a_{1} \ldots, a_{3 m}$ form triples whose sum is B ?

B crossing pairs

Reduction

Reduction from 3-Partition:
Given $a_{1} \ldots, a_{3 m}$ form triples whose sum is B ?

B crossing pairs

- Route m paths of length $(3 m-3) \cdot B+B$
- Each path has to pick up a_{i} 's summing to (at most) B.

Outline

1. Density of k-gap planar graphs
2. Complete (bipartite) graphs
3. Complexity of recognizing 1-gap planar graphs
4. Relation to other graph classes

Relation to other Graph Classes

Theorem.
For every $k \geq 1$ the following holds.
$(2 k)$-PLANAR $\subsetneq k$-GAP-PLANAR $\subsetneq(2 k+2)$-QUASIPLANAR

Relation to other Graph Classes

Theorem.

For every $k \geq 1$ the following holds. $(2 k)$-PLANAR $\subsetneq k$-GAP-PLANAR $\subsetneq(2 k+2)$-QUASIPLANAR k-GAP-PLANAR $\subseteq(2 k+2)$-QuAsIPLANAR:

- drawing Γ is q-quasiplanar \Leftrightarrow no subset of q edges has

$$
\binom{q}{2}=q \cdot(q-1) / 2 \text { crossings }
$$

- Drawing Γ is k-gap \Rightarrow any q edges induce $\leq k \cdot q$ crossings

Relation to other Graph Classes

Theorem.

For every $k \geq 1$ the following holds. $(2 k)$-PLANAR $\subsetneq k$-GAP-PLANAR $\subsetneq(2 k+2)$-QUASIPLANAR k-GAP-PLANAR $\subseteq(2 k+2)$-QuAsIPLANAR:

- drawing Γ is q-quasiplanar \Leftrightarrow no subset of q edges has

$$
\binom{q}{2}=q \cdot(q-1) / 2 \text { crossings }
$$

- Drawing Γ is k-gap \Rightarrow any q edges induce $\leq k \cdot q$ crossings
$\Rightarrow k$-gap planar drawing is q-quasiplanar if $(q-1) / 2>k$, i.e., $q>2 k+1$.

Relation to Quasiplanarity

Lemma.

For every $k \geq 1$ there exists a graph that is (3-)quasiplanar but not k-gap planar.

Start with $K_{3,3}$:

- Replace each $0 —$ by
- Resulting graph G is quasiplanar

Relation to Quasiplanarity

Lemma.

For every $k \geq 1$ there exists a graph that is (3-)quasiplanar but not k-gap planar.

Start with $K_{3,3}$:

- Resulting graph G is quasiplanar
- But not k-gap planar:
- choose one path per edge of $K_{3,3} \rightsquigarrow(19 k)^{9}$ crossings.
- each crossing counted (19k) ${ }^{7}$ times.
- $\Rightarrow \operatorname{cr}(G)>(19 k)^{2}>9 \cdot 19 \cdot 2 k=|E(G)| \cdot k$

Relation to k-Planarity

Lemma.

Every $2 k$-planar drawing is k-gap planar.
A : crossings $\quad B$: edges (k vertices per edge)

$\exists k$-gap assignment \Leftrightarrow
H has a matching of A into B.

Relation to k-Planarity

Lemma.

Every $2 k$-planar drawing is k-gap planar.
A : crossings $\quad B$: edges (k vertices per edge)

$\exists k$-gap assignment \Leftrightarrow
H has a matching of A into B.

$$
B^{\prime}=N\left(A^{\prime}\right)
$$

Relation to k-Planarity

Lemma.

Every $2 k$-planar drawing is k-gap planar.
A : crossings $\quad B$: edges (k vertices per edge)

$\exists k$-gap assignment

\Leftrightarrow

H has a matching of A into B.

$$
B^{\prime}=N\left(A^{\prime}\right)
$$

- A^{\prime} incident to $2 k\left|A^{\prime}\right|$ edges.
- Vertices in B have degree $\leq 2 k$.
$\Rightarrow\left|B^{\prime}\right| \geq\left|A^{\prime}\right|$.

Relation to k-Planarity

Lemma.

Every $2 k$-planar drawing is k-gap planar.
A : crossings $\quad B$: edges (k vertices per edge)

$\exists k$-gap assignment \Leftrightarrow
H has a matching of A into B.

$$
B^{\prime}=N\left(A^{\prime}\right)
$$

- A^{\prime} incident to $2 k\left|A^{\prime}\right|$ edges.
- Vertices in B have degree $\leq 2 k$.
$\Rightarrow\left|B^{\prime}\right| \geq\left|A^{\prime}\right|$.
Hence a k-gap assignment exists by Hall's theorem.

Relation to k-planarity

Lemma.

For every $k \geq 1$ there exists a 1-gap planar graph that is not k-planar.

Replace each gray edge o by $t=5(k+1)^{4}$ parallel paths of length 2.

Relation to k-planarity

Lemma.

For every $k \geq 1$ there exists a 1-gap planar graph that is not k-planar.

Replace each gray edge o by $t=5(k+1)^{4}$ parallel paths of length 2.

- In a k-planar drawing, we can pick $(k+1)$ paths for each edge such that paths of different edges do not cross.
- Wheel must be drawn as in the picture.
- Red edge has $\geq k+1$ crossings.

Conclusion

Gap planarity is a new beyond planarity concept:

- Density: linear, $5 n-10$ for 1-gap planar
- Complete graphs: up to $n-8$

- Complexity: NP-hard (even with fixed rotation scheme)
- Interesting relation with k-planar graphs:
- $2 k$-planar graphs are k-gap planar
- 1-gap planar graphs are not k-planar for any k

Conclusion

Gap planarity is a new beyond planarity concept:

- Density: linear, $5 n-10$ for 1-gap planar
- Complete graphs: up to $n-8$

- Complexity: NP-hard (even with fixed rotation scheme)
- Interesting relation with k-planar graphs:
- $2 k$-planar graphs are k-gap planar
- 1-gap planar graphs are not k-planar for any k

Questions:

- Which complete bipartite graphs are 1-gap planar?
- Complexity of outer-k-gap-planarity?
- Do 1-gap planar drawings have RAC drawings with few bends?

