Gap-Planar Graphs

Sang Won Bae, Jean-Francois Baffier, Jinhee Chun, Peter Eades, Kord Eickmeyer, Luca Grilli, Seok-Hee Hong, Matias Korman, Fabrizio Montecchiani, Ignaz Rutter, Csaba D. Tóth

Graph Drawing · September 27, 2017

Cased Drawings

• Many graphs need crossings.

Crossings impede readability \Rightarrow Make crossings nice.

Cased Drawings

• Many graphs need crossings.

Crossings impede readability \Rightarrow Make crossings nice.

Edge casings:

at each crossing insert a small gap into one of the edges.

k-Gap Planarity

We restrict the number of gaps per edge:

- Gap assignment assigns each crossing to one of its edges.
- Drawing Γ is k-gap planar if each edge is assigned $\leq k$ crossings.

k-Gap Planarity

We restrict the number of gaps per edge:

- Gap assignment assigns each crossing to one of its edges.
- Drawing Γ is k-gap planar if each edge is assigned $\leq k$ crossings.
- Graph *G* is *k*-gap planar if it has a *k*-gap planar drawing.

k-Gap Planarity

We restrict the number of gaps per edge:

- Gap assignment assigns each crossing to one of its edges.
- Drawing Γ is k-gap planar if each edge is assigned $\leq k$ crossings.
- Graph *G* is *k*-gap planar if it has a *k*-gap planar drawing.

Questions:

- What is the maxium density of *k*-gap planar graphs?
- Which graphs are *k*-gap planar? Can we recognize them?
- What is the relation to *k*-planarity? To *k*-quasiplanarity?

Edge casings: [Eppstein, van Kreveld, Mumford, Speckmann, GD '07] optimize casings in a given drawing:

- Optimize tunnels (= gaps) and switches
- Stacking and weaving model

 $O(m^4)$ -algorithm for minimizing maximum number of gaps.

Edge casings: [Eppstein, van Kreveld, Mumford, Speckmann, GD '07] optimize casings in a given drawing:

- Optimize tunnels (= gaps) and switches
- Stacking and weaving model

 $O(m^4)$ -algorithm for minimizing maximum number of gaps.

Near-planarity:

[Pach, Tóth'97, Bekos, Kaufmann, Raftopoulou' 16,

- *k*-planar graphs Kobourov, Liotta, Montecchiani'17]
- *k*-quasiplanar graphs

[Agarwal, Aronov, Pach, Pollack, Sharir '97, Ackerman, Tardos '07, Fox, Pach, Suk, '13]

• fan-planarity [Kaufmann, Ueckerdt '14, Binucci, Di Giacomo, Didimo, Montecchiani, Patrignani, Symvonis, Tollis '15, Bekos, Cornelsen, Grilli, Hong, Kaufmann '16]

Edge casings: [Eppstein, van Kreveld, Mumford, Speckmann, GD '07] optimize casings in a given drawing:

- Optimize tunnels (= gaps) and switches
- Stacking and weaving model

 $O(m^4)$ -algorithm for minimizing maximum number of gaps.

Near-planarity:

[Pach, Tóth'97, Bekos, Kaufmann, Raftopoulou' 16,

- *k*-planar graphs Kobourov, Liotta, Montecchiani'17]
- k-quasiplanar graphs
- [Agarwal, Aronov, Pach, Pollack, Sharir '97, Ackerman, Tardos '07, Fox, Pach, Suk, '13] • fan-planarity [Kaufmann, Ueckerdt '14, Binucci, Di Giacomo, Didimo,
 - Montecchiani, Patrignani, Symvonis, Tollis '15, Bekos, Cornelsen, Grilli, Hong, Kaufmann '16]
 - fan-crossing-freeness
 - RAC drawings

[Cheong, Har-Peled, Kim, Kim '13]

[Didimo, Liotta '12]

Edge casings: [Eppstein, van Kreveld, Mumford, Speckmann, GD '07] optimize casings in a given drawing:

- Optimize tunnels (= gaps) and switches
- Stacking and weaving model

 $O(m^4)$ -algorithm for minimizing maximum number of gaps.

Near-planarity:

[Pach, Tóth'97, Bekos, Kaufmann, Raftopoulou' 16,

- *k*-planar graphs Kobourov, Liotta, Montecchiani'17]
- *k*-quasiplanar graphs
- [Agarwal, Aronov, Pach, Pollack, Sharir '97, Ackerman, Tardos '07, Fox, Pach, Suk, '13]
- fan-planarity [Kaufmann, Ueckerdt '14, Binucci, Di Giacomo, Didimo, Montecchiani, Patrignani, Symvonis, Tollis '15, Bekos, Cornelsen, Grilli, Hong, Kaufmann '16]
- fan-crossing-freeness
- RAC drawings

[Cheong, Har-Peled, Kim, Kim '13]

[Didimo, Liotta '12]

[Many et al.]

Outline

- 1. Density of *k*-gap planar graphs
- 2. Complete (bipartite) graphs
- 3. Complexity of recognizing 1-gap planar graphs
- 4. Relation to other graph classes

Outline

1. Density of *k*-gap planar graphs

- 2. Complete (bipartite) graphs
- 3. Complexity of recognizing 1-gap planar graphs
- 4. Relation to other graph classes

Lemma.

Let Γ be a k-gap planar drawing of G = (V, E). For any $E' \subseteq E$, $\Gamma[E']$ contains at most $k \cdot |E'|$ crossings.

Lemma.

Let Γ be a k-gap planar drawing of G = (V, E). For any $E' \subseteq E$, $\Gamma[E']$ contains at most $k \cdot |E'|$ crossings.

Corollary.

For a k-gap planar graph G with m edges it is $cr(G) \le k \cdot m$.

Lemma. Let Γ be a k-gap planar drawing of G = (V, E). For any $E' \subseteq E$, $\Gamma[E']$ contains at most $k \cdot |E'|$ crossings.

Corollary.

For a k-gap planar graph G with m edges it is $cr(G) \le k \cdot m$.

Theorem.

k-gap planar graphs on *n* vertices have $O(\sqrt{k} \cdot n)$ edges.

Lemma. Let Γ be a k-gap planar drawing of G = (V, E). For any $E' \subseteq E, \Gamma[E']$ contains at most $k \cdot |E'|$ crossings.

Corollary.

For a k-gap planar graph G with m edges it is $cr(G) \leq k \cdot m$.

Theorem.

k-gap planar graphs on n vertices have $O(\sqrt{k} \cdot n)$ edges.

Proof.

Crossing lemma: $cr(G) \in \Omega(\frac{m^3}{n^2})$, i.e. $cr(G) \ge c \cdot m^3/n^2$. $\Rightarrow c \cdot m^3/n^2 \leq \operatorname{cr}(G) \leq k \cdot m$ $\Rightarrow m \leq \sqrt{c}/c \cdot \sqrt{k} \cdot n$

Lemma. Let Γ be a k-gap planar drawing of G = (V, E). For any $E' \subseteq E$, $\Gamma[E']$ contains at most $k \cdot |E'|$ crossings.

Corollary. For a k-gap planar graph G with m edges it is $cr(G) \leq k \cdot m$.

Theorem.

k-gap planar graphs on *n* vertices have $O(\sqrt{k} \cdot n)$ edges.

Proof.

 $\Rightarrow c \cdot m^3/n^2 \quad \text{This is asymptotically tight.} \quad c \cdot m^3/n^2.$ $\Rightarrow m \leq \sqrt{c} \quad \text{This is asymptotically tight.}$

What are the constants for 1-gap planar?

Theorem.

A 1-gap planar graph on *n* vertices has $\leq 5n - 10$ edges.

A 1-gap planar graph with 5n - 10 edges exists for all $n \ge 20$.

Theorem.

Theorem.

Theorem.

Theorem.

Let G be a 1-gap-planar multigraph on $n \ge 3$ vertices without homotopic parallel edges that has maximum number of edges.

- Fix a 1-gap-planar drawing Γ minimizing crossings.
- Pick maximum $H \subseteq G$ with edges pairwise non-crossing.
- Tie breaker: Minimize connected components of *H*.

Let G be a 1-gap-planar multigraph on $n \ge 3$ vertices without homotopic parallel edges that has maximum number of edges.

- Fix a 1-gap-planar drawing Γ minimizing crossings.
- Pick maximum $H \subseteq G$ with edges pairwise non-crossing.
- Tie breaker: Minimize connected components of *H*.
- If H happens to be a triangulation spanning V(G):

- face containing end of *e* but no gap
- otherwise choose uncharged face

Let G be a 1-gap-planar multigraph on $n \ge 3$ vertices without homotopic parallel edges that has maximum number of edges.

- Fix a 1-gap-planar drawing Γ minimizing crossings.
- Pick maximum $H \subseteq G$ with edges pairwise non-crossing.
- Tie breaker: Minimize connected components of *H*.
- If H happens to be a triangulation spanning V(G):

- face containing end of *e* but no gap
- otherwise choose uncharged face

Let G be a 1-gap-planar multigraph on $n \ge 3$ vertices without homotopic parallel edges that has maximum number of edges.

- Fix a 1-gap-planar drawing Γ minimizing crossings.
- Pick maximum $H \subseteq G$ with edges pairwise non-crossing.
- Tie breaker: Minimize connected components of *H*.
- If H happens to be a triangulation spanning V(G):

- face containing end of *e* but no gap
- otherwise choose uncharged face

Let G be a 1-gap-planar multigraph on $n \ge 3$ vertices without homotopic parallel edges that has maximum number of edges.

- Fix a 1-gap-planar drawing Γ minimizing crossings.
- Pick maximum $H \subseteq G$ with edges pairwise non-crossing.
- Tie breaker: Minimize connected components of *H*.
- If H happens to be a triangulation spanning V(G):

- face containing end of *e* but no gap
- otherwise choose uncharged face

Let G be a 1-gap-planar multigraph on $n \ge 3$ vertices without homotopic parallel edges that has maximum number of edges.

- Fix a 1-gap-planar drawing Γ minimizing crossings.
- Pick maximum $H \subseteq G$ with edges pairwise non-crossing.
- Tie breaker: Minimize connected components of *H*.

If H happens to be a triangulation spanning V(G):

Charge edges $e \in E(G) \setminus E(H)$ to faces:

- face containing end of *e* but no gap
- otherwise choose uncharged face

 $\Rightarrow |E(H)| = 3n - 6, |E(G) \setminus E(H)| \le 2n - 4$

Lemma. *H* happens to be a triangulation spanning V(G).

Lemma. *H* happens to be a triangulation spanning V(G).

We start with a few basic observations.

We start with a few basic observations.

Lemma 8. Graph G = (V, E) is connected.

Proof. Suppose, to the contrary, that G is disconnected. Let $G_1 = (V_1, E_1)$ be one component, and let $G_2 = (V_2, E_2)$, where $V_2 = V \setminus V_1$ and $E_2 = E \setminus E_1$. For i = 1, 2, let Γ_i be the drawing of G_i inherited from G, and let Γ_i^* be its planarization.

Let f_2 be a face in Γ_2^* incident to some vertex $v_2 \in V_2$. Apply a projective transformation to Γ_1 so that the outer face is incident to some vertex $v_1 \in V_1$; followed by an affine transformation that maps Γ_1 into the interior of face f_2 . Now we can add a new edge (v_1, v_2) , contradicting the maximality of G.

Since G is connected, every face in the planarization Γ^* of Γ has a connected boundary. The boundary walk of a face f is a closed walk (a_1, a_2, \ldots, a_m) in Γ^* such that f lies on the left hand side of each edge (a_i, a_{i+1}) along the walk; and every two consecutive edges of the walk, (a_{i-1}, a_i) and (a_i, a_{i+1}) , are also consecutive in the counterclockwise rotation of all edges incident to a_i . Let F_0 denote the set of faces in the planarization Γ^* that are not incident to any vertex in V.

Lemma 9. If $f \in F_0$, then the boundary walk of f is

a simple cycle (i.e., has no repeated vertices) with at least 3 vertices;
disjoint from the boundary walk of any other face in F₀.

Proof. 1. Let *f* ∈ *F*₀, and let *w* = (*a*₁, *a*₂, . . . , *a*_ℓ) be its boundary walk for some $\ell \ge 3$. Let *G_f* = {*a*₁, . . . , *a*_ℓ} be the set of vertices in *w*; and let *E_f* ⊂ *E* be the set of edges in *G* that contain some edge of *w*. It suffices to show that $|C_f| = \ell$, and then *w* has no repeated vertices, hence it is a simple cycle.

Suppose, to the contrary, that the vertices in w are not distinct. Since $f \in F_0$, all vertices in w are crossings in the drawing Γ , consequently they all have degree 4 in the planarization Γ^* . If $a_i = a_j$, $i \neq j$, then a_i and a_j cannot be consecutive vertices in w, and two pairs of edges from (a_{i-1},a_j) , (a_i,a_{i+1}) , (a_{j-1},a_j) , (a_{j},a_{j+1}) are part of the same edge in E. If $|C_f| = \ell - k$, for some $k \in \mathbb{N}$, then $|E_f| \leq \ell - 2k$. This implies $|E_f| < |C_f|$. That is, the edges in E_f are involved in more than $|E_f|$ crossings, contradicting the assumption that Γ is a 1-gap-planar drawing.

2. Let $f_1, f_2 \in F_0$ be two faces, with boundary walks $w_1 = (a_1, \ldots, a_\ell)$ and $w_2 = (b_1, \ldots, b_\ell)$. Both w_1 and w_2 are simple cycles by part 1. For i = 1, 2, let C_i be the set of vertices in w_i , and $E_i \subseteq E$ the set of edges of G that contain the edges of the walk w_i .

Lemma. *H* happens to be a triangulation spanning V(G).

We start with a few basic observations.

We start with a few basic observations.

Lemma 8. Graph G = (V, E) is connected.

Proof. Suppose, to the contrary, that G is disconnected. Let $G_1 = (V_1, E_1)$ be one component, and let $G_2 = (V_2, E_2)$, where $V_2 = V \setminus V_1$ and $E_2 = E \setminus E_1$. For i = 1, 2, let Γ_i be the drawing of G_i inherited from G, and let Γ_i^* be its planarization.

Let f_2 be a face in Γ_2^* incident to some vertex $v_2 \in V_2$. Apply a projective transformation to Γ_1 so that the outer face is incident to some vertex $v_1 \in V_1$; followed by an affine transformation that maps Γ_1 into the interior of face f_2 . Now we can add a new edge (v_1, v_2) , contradicting the maximality of G.

Since G is connected, every face in the planarization Γ^* of Γ has a connected boundary. The boundary walk of a face f is a closed walk $(a_1, a_2, ..., a_m)$ in Γ^* such that f lies on the left hand side of each edge (a_i, a_{i+1}) along the walk; and every two consecutive edges of the walk, (a_{i-1}, a_i) and (a_i, a_{i+1}) , are also consecutive in the counterclockwise rotation of all edges incident to a_i . Let F_0 denote the set of faces in the planarization Γ^* that are not incident to any vertex in V.

Lemma 9. If $f \in F_0$, then the boundary walk of f is

a simple cycle (i.e., has no repeated vertices) with at least 3 vertices;
disjoint from the boundary walk of any other face in F₀.

Proof. 1. Let $f \in F_0$, and let $w = (a_1, a_2, \ldots, a_\ell)$ be its boundary walk for some $\ell \geq 3$. Let $G_f = \{a_1, \ldots, a_\ell\}$ be the set of vertices in w; and let $E_f \subset E$ be the set of edges in G that contain some edge of w. It suffices to show that $|G_f| = \ell$, and then w has no repeated vertices, hence it is a simple cycle.

Suppose, to the contrary, that the vertices in *w* are not distinct. Since $f \in F_0$, all vertices in *w* are crossings in the drawing Γ , consequently they all have degree 4 in the planarization Γ^* . If $a_i = a_j$, $i \neq j$, then a_i and a_j cannot be consecutive vertices in *w*, and two pairs of edges from (a_{i-1}, a_j) , (a_i, a_{i+1}) , (a_{j-1}, a_j) , (a_j, a_{j+1}) are part of the same edge in E. If $|C_f| = \ell - k$, for some $k \in \mathbb{N}$, then $|E_f| \leq \ell - 2k$. This implies $|E_f| < |C_f|$. That is, the edges in E_f are involved in more than $|E_f|$ crossings, contradicting the assumption that Γ is a 1-gap-planar drawing.

2. Let $f_1, f_2 \in F_0$ be two faces, with boundary walks $w_1 = (a_1, \ldots, a_\ell)$ and $w_2 = (b_1, \ldots, b_{\ell'})$. Both w_1 and w_2 are simple cycles by part 1. For i = 1, 2, let C_i be the set of vertices in w_i , and $E_i \subseteq E$ the set of edges of G that contain the edges of the walk w_i .

Note that w_1 and w_2 cannot share two consecutive edges, say (a_{i-1}, a_i) and (a_i, a_{i+1}) , since the middle vertex a_i has degree 4 in I^* . When w_1 and w_2 have a common edge, say $(a_i, a_{i+1}) = (b_{j+1}, b_j)$, then three pairs of edges from (a_{i-1}, a_i) , (a_i, a_{i+1}) , (a_{i+1}, a_{i+2}) , (b_{j-1}, b_j) , (b_j, b_{j+1}) (b_{j+1}, b_{j+2}) are part of the same edge in E. When w_1 and w_2 have a common vertex $a_i = b_j$ but no common edge incident to $a_i = b_j$, then two pairs of edges from (a_{i-1}, a_i) , (a_i, a_{i+1}) , (b_{j-1}, b_{j-1}) , (b_j, b_{j+1}) are part of the same edge in E. This implies $|E_1 \cup E_2| < |C_1 \cup C_2|$. That is, the edges in $E_1 \cup E_2$ are involved in more than $|E_1 \cup E_2| < |C_1 \cup C_2|$.

Lemma 10. Graph H = (V, E') is connected.

Proof. Suppose, to the contrary, that H is disconnected. Let $H_1 = (V_1, E'_1)$ be one component, and let $H_2 = (V_2, E'_2)$, where $V_2 = V \setminus V_1$ and $E'_2 = E' \setminus E'_1$.

Consider the faces in the planarization Γ^* of Γ . Notice that there is no face in Γ^* incident to a vertex $v_1 \in V_1$ and a vertex $v_2 \in V_2$, otherwise we could either add a new edge (v_1, v_2) (contradicting the maximality of G), or redraw an existing the edge (v_1, v_2) to pass through the interior of this face, contradicting the maximality of E'.

Consequently, we can partition the faces in Γ^* into three categories: For $i = 1, 2, let F_i$ be the set of faces incident to a vertex in V_i ; and let F_0 be the set of faces incident to neither V_1 nor V_2 . By Lemma 9, the region obtained by removing all faces in F_0 (i.e., $\mathbb{R}^2 \backslash \bigcup_{f \in F_0}$) is connected. Consequently, there exist some faces $f_1 \in F_1$ and $f_2 \in F_2$ that have a common deg in Γ^* . Let $v_1 \in V_1$ and $v_2 \in V_2$ be incident to $f_1 \in F_1$ and $f_2 \in F_2$. Let $e \in E$ be the edge on the common boundary of f_1 and f_2 , and denote its endpoints by $a, b \in V$.

We consider three possible edges (some of which may be homotopic to an existing edge in G): let $e_0 = (v_1, v_2)$ such that it lies in $f_1 \cup f_2$; let $e_1 = (v_1, a)$ (resp., $e_2 = (v_1, b)$) such that it starts in f_1 and follow edge e from f_1 to its endpoint a (resp., b).

– If $e \notin E'$, then replace edge e = (a, b) by a new edge $e_0 = (v_1, v_2)$ in G, and add this new edge to H. This modification contradicts the assumption that H has the minimum number of components.

- Assume e ∈ E'. Note that e₁ and e₂ form a path between a and b_c consequently at most one of these edges may be present in G (as a homotopic copy), otherwise we could modify E' by replacing e with these edges, contradicting the maximality of E'. Now we can increase E by replacing e with e₁ or e₂ (whichever is not already present), contradicting the choice of H.

Both cases lead to a contradiction.

In the proof of Lemma 1, we shall use Sperner's Lemma [37], a well-known discrete analogue of Brouwer's fixed point theorem.

Lemma 11. (Sperner [37]) Let K be a geometric simplicial complex in the plane, where the union of faces is homeomorphic to a disk. Assume that each vertex is assigned a color from the set $\{1, 2, 3\}$ such that three vertices $v_1, v_2, v_3 \in$

Lemma. *H* happens to be a triangulation spanning V(G).

We start with a few basic observations.

We start with a few basic observations.

Lemma 8. Graph G = (V, E) is connected.

Proof. Suppose, to the contrary, that G is disconnected. Let $G_1 = (V_1, E_1)$ be one component, and let $G_2 = (V_2, E_2)$, where $V_2 = V \setminus V_1$ and $E_2 = E \setminus E_1$. For i = 1, 2, let Γ_i be the drawing of G_i inherited from G, and let Γ_i^* be its planarization.

Let f_2 be a face in Γ_2^* incident to some vertex $v_2 \in V_2$. Apply a projective transformation to Γ_1 so that the outer face is incident to some vertex $v_1 \in V_1$; followed by an affine transformation that maps Γ_1 into the interior of face f_2 . Now we can add a new edge (v_1, v_2) , contradicting the maximality of G.

Since G is connected, every face in the planarization Γ^* of Γ has a connected boundary. The boundary walk of a face f is a closed walk (a_1, a_2, \ldots, a_m) in Γ^* such that f lies on the left hand side of each edge (a_i, a_{i+1}) along the walk; and every two consecutive edges of the walk, (a_{i-1}, a_i) and (a_i, a_{i+1}) , are also consecutive in the counterclockwise rotation of all edges incident to a_i . Let F_0 denote the set of faces in the planarization Γ^* that are not incident to any vertex in V.

Lemma 9. If $f \in F_0$, then the boundary walk of f is

a simple cycle (i.e., has no repeated vertices) with at least 3 vertices;
disjoint from the boundary walk of any other face in F₀.

Proof. 1. Let $f \in F_0$, and let $w = (a_1, a_2, ..., a_\ell)$ be its boundary walk for some $\ell \geq 3$. Let $G_f = \{a_1, ..., a_\ell\}$ be the set of vertices in w; and let $E_f \subset E$ be the set of edges in G that contain some edge of w. It suffices to show that $|C_f| = \ell$, and then w has no repeated vertices, hence it is a simple cycle.

Suppose, to the contrary, that the vertices in *w* are not distinct. Since $f \in F_0$, all vertices in *w* are crossings in the drawing Γ , consequently they all have degree 4 in the planarization Γ^* . If $a_i = a_j$, $i \neq j$, then a_i and a_j cannot be consecutive vertices in *w*, and two pairs of edges from (a_{i-1}, a_j) , (a_i, a_{i+1}) , (a_{j-1}, a_j) , (a_j, a_{j+1}) are part of the same edge in E. If $|C_f| = \ell - k$, for some $k \in \mathbb{N}$, then $|E_f| \leq \ell - 2k$. This implies $|E_f| < |C_f|$. That is, the edges in E_f are involved in more than $|E_f|$ crossings, contradicting the assumption that Γ is a 1-gap-planar drawing.

2. Let $f_1, f_2 \in F_0$ be two faces, with boundary walks $w_1 = (a_1, \ldots, a_\ell)$ and $w_2 = (b_1, \ldots, b_{\ell'})$. Both w_1 and w_2 are simple cycles by part 1. For i = 1, 2, let C_i be the set of vertices in w_i , and $E_i \subseteq E$ the set of edges of G that contain the edges of the walk w_i .

Note that w_1 and w_2 cannot share two consecutive edges, say (a_{i-1}, a_i) and (a_i, a_{i+1}) , since the middle vertex a_i has degree 4 in I^{-*} . When w_i and w_2 have a common edge, say $(a_i, a_{i+1}) = (b_{j+1}, b_j)$, then three pairs of edges from (a_{i-1}, a_i) , (a_i, a_{i+1}) , (a_{i+1}, a_{i+2}) , (b_{j-1}, b_j) , (b_j, b_{j+1}) (b_{j+1}, b_{j+2}) are part of the same edge in E. When w_i and w_2 have a common vertex $a_i = b_j$ but no common edge incident to $a_i = b_j$, then two pairs of edges from (a_{i-1}, a_i) , (a_i, a_{i+1}) , (b_{j-1}, b_j) , (b_j, b_{j+1}) are part of the same edge in E. This implies $|E_1 \cup E_2| < |C_1 \cup C_2|$. That is, the edges in $E_1 \cup E_2$ are involved in more than $E_1 \cup E_2| < b_1 \cup c_2|$ crossings, contradicting the assumption that I^* is $|c_{3ap}$ -Planar. \Box

Lemma 10. Graph H = (V, E') is connected.

Proof. Suppose, to the contrary, that H is disconnected. Let $H_1 = (V_1, E'_1)$ be one component, and let $H_2 = (V_2, E'_2)$, where $V_2 = V \setminus V_1$ and $E'_2 = E' \setminus E'_1$.

Consider the faces in the planarization Γ^* of Γ . Notice that there is no face in Γ^* incident to a vertex $v_1 \in V_1$ and a vertex $v_2 \in V_2$, otherwise we could either add a new edge (v_1, v_2) (contradicting the maximality of G), or redraw an existing the edge (v_1, v_2) to pass through the interior of this face, contradicting the maximality of E'.

Consequently, we can partition the faces in I^* into three categories: For i = 1, 2, let F_i be the set of faces incident to a vertex in V_i , and let F_0 be the set of faces incident to neither V_1 nor V_2 . By Lemma 9, the region obtained by removing all faces in F_0 (i.e., $\mathbb{R}^2 \setminus \bigcup_{f \in F_1}$) is connected. Consequently, there exist some faces $f_1 \in F_1$ and $f_2 \in F_2$ that have a common edge in I^* . Let $v_1 \in V_1$ and $v_2 \in V_2$ be incident to $f_1 \in F_1$ and $f_2 \in F_2$. Let $e \in E$ be the edge on the common boundary of f_1 and f_2 , and denote its endpoints by $a, b \in V$. We consider three possible edges (some of which may be homotopic to an

to consider antice possible coges (since or which may be nonnecepte to an existing edge in G): let $e_0 = (v_1, v_2)$ such that it lies in $f_1 \cup f_2$; let $e_1 = (v_1, a)$ (resp., $e_2 = (v_1, b)$) such that it starts in f_1 and follow edge e from f_1 to its endpoint a (resp., b).

- If e ∉ E', then replace edge e = (a, b) by a new edge e₀ = (v₁, v₂) in G, and add this new edge to H. This modification contradicts the assumption that H has the minimum number of components.
- Assume e ∈ E'. Note that e₁ and e₂ form a path between a and b_c consequently at most one of these edges may be present in G (as a homotopic copy), otherwise we could modify E' by replacing e with these edges, contradicting the maximality of E'. Now we can increase E by replacing e with e₁ or e₂ (whichever is not already present), contradicting the choice of H.

Both cases lead to a contradiction.

In the proof of Lemma 1, we shall use Sperner's Lemma [37], a well-known discrete analogue of Brouwer's fixed point theorem.

Lemma 11. (Sperner [37]) Let K be a geometric simplicial complex in the plane, where the union of faces is homeomorphic to a disk. Assume that each vertex is assigned a color from the set [1, 2, 3] such that three vertices $v_1, v_2, v_3 \in$ ∂K are colored 1, 2, and 3, respectively, and for any pair $i, j \in \{1, 2, 3\}$, the vertices on the path between v_i and v_j along ∂K that does not contain the 3rd vertex are colored with $\{i, j\}$. Then K contains a triangle whose vertices have all three different colors.

We are now ready to prove Lemma 1.

Lemma 1. The multigraph H is a triangulation. That is, a plane multi-graph in which every face is bounded by a walk with three vertices and three edges.

Proof. We need to show that the multigraph H is a triangulation. Suppose, to the contrary, that H is not a triangulation. Then H has a face f whose boundary walk $w = (v_1, v_2, \ldots, v_m)$ has more than three vertices $(m \ge 4)$. To simplify notation, we assume that w is a simple cycle; this assumption is not essential for the proof.

Let P_f be the subgraph of Γ^* formed by all edges and vertices lying in the interior or on the boundary of f_i let V_j denote the set of vertices of P_f (it consists or v_1, \ldots, v_m and all crossings in the interior or on the boundary of f_i ; and let F denote the set of faces of Γ^* that lie in f. Let $F_0 \subseteq F$ be the set of faces that are not incident to any vertex; and for $i = 1, \ldots, m$, let $F_i \subseteq F$ be the set of faces incident to v_i .

Note that a face in F cannot be incident to two nonconsecutive vertices v_i and $v_i, j \notin \{i-1, i, i+1\}$, otherwise we could add a new edge v_{ij} , contradicting the maximality of G. A vertex $c \in V_f$ cannot be incident to two faces $f_1 \in F_i$ and $f_2 \in F_j$ such that $j \notin \{i-1, i, i+1\}$, otherwise two edges $e_1, e_2 \in E \setminus E'$ cross at c, and we can replace edge e_1 with a new edge $v_i v_j$ that lies in $f_1 \cup f_2$ that uses one gap to cross edge e_2 —the new edge can be insterted into E', contradicting the maximality of H.

We distinguish two cases

Case 1. For every $i \in \{1, ..., m\}$, the edge (v_i, v_{i+1}) is incident to faces in $F_0 \cup F_i \cup F_{i+1}$ only. We use Speners's Lemma [37] for a triangulation K of the dual graph of the faces $F_1 \cup ... \cup F_m$, that we define here. We first create the standard dual graph of all faces in F: The nodes correspond to the faces in F_i and two nodes are adjacent if the corresponding faces are adjacent in T^* . We then triangulate the standard dual graph as follows. If a crossing $c \in V_f$ is incident to four faces in F, then the adjacency graph forms a 4-cycle in the standard dual. By Lemma 9(2), at least three of those faces are in $F \setminus F_0$, and we triangulate the 4-cycle by an arbitrary diagonal between two faces in F influx, proved all nodes corresponding to F_0 , and triangulate the chain of adjacent nodes arbitrarily to obtain a triangulation K. The condition in Case 1 implies that K is a geometric simplicial complex, where the union of faces is homeomorphic to a disk.

We now define a 3-coloring of K (the coloring need not be proper). Assign color 1 to all faces in F_i . For $i = 2, \ldots, m$, assign color 2 to all faces in $F_i \setminus \bigcup_{j < i} F_j$ if i is even, and color 3 if i is odd.

By Sperner's Lemma, K has a triangle whose nodes have all three different colors, say $f_1 \in F_i$, $f_2 \in F_j$, and $f_3 \in F_k$. Without loss of generality, assume

Lemma. *H* happens to be a triangulation spanning V(G).

We start with a few basic observations.

We start with a few basic observations.

Lemma 8. Graph G = (V, E) is connected.

Proof. Suppose, to the contrary, that G is disconnected. Let $G_1 = (V_1, E_1)$ be one component, and let $G_2 = (V_2, E_2)$, where $V_2 = V \setminus V_1$ and $E_2 = E \setminus E_1$. For i = 1, 2, let Γ_i be the drawing of G_i inherited from G, and let Γ_i^* be its planarization.

Let f_2 be a face in Γ_2^* incident to some vertex $v_2 \in V_2$. Apply a projective transformation to Γ_1 so that the outer face is incident to some vertex $v_1 \in V_1$; followed by an affine transformation that maps Γ_1 into the interior of face f_2 . Now we can add a new edge (v_1, v_2) , contradicting the maximality of G.

Since G is connected, every face in the planarization Γ^* of Γ has a connected boundary. The boundary walk of a face f is a closed walk (a_1, a_2, \ldots, a_m) in Γ^* such that f lies on the left hand side of each edge (a_i, a_{i+1}) along the walk; and every two consecutive edges of the walk, (a_{i-1}, a_i) and (a_i, a_{i+1}) , are also consecutive in the counterclockwise rotation of all edges incident to a_i . Let F_0 denote the set of faces in the planarization Γ^* that are not incident to any vertex in V.

Lemma 9. If $f \in F_0$, then the boundary walk of f is

a simple cycle (i.e., has no repeated vertices) with at least 3 vertices;
disjoint from the boundary walk of any other face in F₀.

Proof. 1. Let $f \in F_0$, and let $w = (a_1, a_2, \dots, a_\ell)$ be its boundary walk for some $\ell \geq 3$. Let $G_f = \{a_1, \dots, a_\ell\}$ be the set of vertices in w; and let $E_f \subset E$ be the set of edges in G that contain some edge of w. It suffices to show that $|G_f| = \ell$, and then w has no repeated vertices, hence it is a simple cycle.

Suppose, to the contrary, that the vertices in *w* are not distinct. Since $f \in F_0$, all vertices in *w* are crossings in the drawing Γ , consequently they all have degree 4 in the planarization Γ^* . If $a_i = a_j$, $i \neq j$, then a_i and a_j cannot be consecutive vertices in *w*, and two pairs of edges from (a_{i-1},a_j) , (a_i,a_{i+1}) , (a_{j-1},a_j) , (a_i,a_{j+1}) are part of the same edge in E. If $|C_f| = \ell - k$, for some $k \in \mathbb{N}$, then $|E_f| \leq \ell - 2k$. This implies $|E_f| < |C_f|$. That is, the edges in E_f are involved in more than $|E_f|$ crossings, contradicting the assumption that Γ is a 1-gap-planar drawing.

2. Let $f_1, f_2 \in F_0$ be two faces, with boundary walks $w_1 = (a_1, \ldots, a_\ell)$ and $w_2 = (b_1, \ldots, b_{\ell'})$. Both w_1 and w_2 are simple cycles by part 1. For i = 1, 2, let C_i be the set of vertices in w_i , and $E_i \subseteq E$ the set of edges of G that contain the edges of the walk w_i .

Note that w_1 and w_2 cannot share two consecutive edges, say (a_{i-1}, a_i) and (a_i, a_{i+1}) , since the middle vertex a_i has degree 4 in I^{-*} . When w_1 and w_2 have a common edge, say $(a_i, a_{i+1}) = (b_{i+1}, b_i)$, then three pairs of edges from $(a_{i-1}, a_i), (a_i, a_{i+1}), (a_{i+1}, a_{i+2}), (b_{j-1}, b_j), (b_j, b_{j+1}) (b_{j+1}, b_{j+2})$ are part of the same edge in E. When w_1 and w_2 have a common vertex $a_i = b_j$ but no common edge incident to $a_i = b_j$, then two pairs of edges from $(a_{i-1}, a_i),$ $(a_i, a_{i+1}), (b_{j-1}, b_j), (b_j, b_{j+1})$ are part of the same edge in E. This implies $|E_1 \cup E_2| < |C_1 \cup |C_2|$. That is, the edges in $E_1 \cup E_2$ are involved in more than $|E_1 \cup E_2| < |C_1 \cup |C_2|$.

Lemma 10. Graph H = (V, E') is connected.

Proof. Suppose, to the contrary, that H is disconnected. Let $H_1 = (V_1, E'_1)$ be one component, and let $H_2 = (V_2, E'_2)$, where $V_2 = V \setminus V_1$ and $E'_2 = E' \setminus E'_1$.

Consider the faces in the planarization T^* of T. Notice that there is no face in T^* incident to a vertex $v_1 \in V_1$ and a vertex $v_2 \in V_2$, otherwise we could either add a new edge (v_1, v_2) (contradicting the maximality of G), or redraw an existing the edge (v_1, v_2) to pass through the interior of this face, contradicting the maximality of E'.

Consequently, we can partition the faces in I^* into three categories: For i = 1, 2, let F_i be the set of faces incident to a vertex in V_i , and let F_0 be the set of faces incident to neither V_1 nor V_2 . By Lemma 9, the region obtained by removing all faces in F_0 (i.e., $\mathbb{R}^2 \setminus \bigcup_{f \in F_1}$) is connected. Consequently, there exist some faces $f_1 \in F_1$ and $f_2 \in F_2$ that have a common edge in I^* . Let $v_1 \in V_1$ and $v_2 \in V_2$ be incident to $f_1 \in F_1$ and $f_2 \in F_2$. Let $e \in E$ be the edge on the common boundary of f_1 and f_2 , and denote its endpoints by $a, b \in V$. We consider three possible edges (some of which may be homotopic to an

to consider antice possible coges (since or which may be nonnecepte to an existing edge in G): let $e_0 = (v_1, v_2)$ such that it lies in $f_1 \cup f_2$; let $e_1 = (v_1, a)$ (resp., $e_2 = (v_1, b)$) such that it starts in f_1 and follow edge e from f_1 to its endpoint a (resp., b).

- If $e \notin E'$, then replace edge e = (a, b) by a new edge $e_0 = (v_1, v_2)$ in G, and add this new edge to H. This modification contradicts the assumption that H has the minimum number of components.
- Assume e ∈ E'. Note that e₁ and e₂ form a path between a and b_c consequently at most one of these edges may be present in G (as a homotopic copy), otherwise we could modify E' by replacing e with these edges, contradicting the maximality of E'. Now we can increase E by replacing e with e₁ or e₂ (whichever is not already present), contradicting the choice of H.

Both cases lead to a contradiction.

In the proof of Lemma 1, we shall use Sperner's Lemma [37], a well-known discrete analogue of Brouwer's fixed point theorem.

Lemma 11. (Sperner [37]) Let K be a geometric simplicial complex in the plane, where the union of faces is homeomorphic to a disk. Assume that each vertex is assigned a color from the set [1, 2, 3] such that three vertices $v_1, v_2, v_3 \in$ ∂K are colored 1, 2, and 3, respectively, and for any pair $i, j \in \{1, 2, 3\}$, the vertices on the path between v_i and v_j along ∂K that does not contain the β -divertex are colored with $\{i, j\}$. Then K contains a triangle whose vertices have all three different colors.

We are now ready to prove Lemma 1.

Lemma 1. The multigraph H is a triangulation. That is, a plane multi-graph in which every face is bounded by a walk with three vertices and three edges.

Proof. We need to show that the multigraph H is a triangulation. Suppose, to the contrary, that H is not a triangulation. Then H has a face f whose boundary walk $w = (v_1, v_2, \ldots, v_m)$ has more than three vertices $(m \ge 4)$. To simplify notation, we assume that w is a simple cycle; this assumption is not essential for the proof.

Let \overline{P}_f be the subgraph of Γ^* formed by all edges and vertices lying in the interior or on the boundary of f_i let V_f denote the set of vertices of P_f (it consists of v_1, \ldots, v_m and all crossings in the interior or on the boundary of f_i); and let F denote the set of faces of Γ^* that lie in f. Let $F_0 \subseteq F$ be the set of faces that are not incident to any vertex; and for $i = 1, \ldots, m$, let $F_i \subseteq F$ be the set of faces incident to v_i .

Note that a face in F cannot be incident to two nonconsecutive vertices v_i and $v_i, j \notin \{i-1, i, i+1\}$, otherwise we could add a new edge v_{ij} , contradicting the maximality of G. A vertex $c \in V_f$ cannot be incident to two faces $f_1 \in F_i$ and $f_2 \in F_j$ such that $j \notin \{i-1, i, i+1\}$, otherwise two edges $e_1, e_2 \in E \setminus E'$ cross at c, and we can replace edge e_1 with a new edge $v_i v_j$ that lies in $f_1 \cup f_2$ that uses one gap to cross edge e_2 —the new edge can be instead into E', contradicting the maximality of H.

We distinguish two cases

Case 1. For every $i \in \{1, ..., m\}$, the edge (v, v_{i+1}) is incident to faces in $F_0 \cup F_i \cup F_{i+1}$ only. We use Sperner's Lemma [37] for a triangulation K of the dual graph on the faces $F_1 \cup ... VF_m$, that we define here. We first create the standard dual graph of all faces in F: The nodes correspond to the faces in F_i and two nodes are adjacent if the corresponding faces are adjacent in T^* . We then triangulate the standard dual graph as follows. If a crossing $c \in V_f$ is incident to four faces in F, then the adjacency graph forms a 4-cycle in the standard dual. By Lemma 9(2), at least three of those faces are in F/F_0 , and we triangulate the 4-cycle by an arbitrary diagonal between two faces in F_1 F₀. Note that the faces corresponding to F_0 , and triangulate the chain of adjacent nodes arbitrarily to obtain a triangulation K. The condition in Case 1 implies that K is a geometric simplicial complex, where the union of faces is homeomorphic to a disk.

We now define a 3-coloring of K (the coloring need not be proper). Assign color 1 to all faces in F_1 . For $i = 2, \ldots, m$, assign color 2 to all faces in $F_i \setminus \bigcup_{j < i} F_j$ if i is even, and color 3 if i is odd.

By Sperner's Lemma, K has a triangle whose nodes have all three different colors, say $f_1 \in F_i$, $f_2 \in F_j$, and $f_3 \in F_k$. Without loss of generality, assume

that $j\notin\{i-1,i+1\}.$ We add a new edge $(v_i,v_j),$ as follows. There are three cases depending on how the edge f_if_j in K was created:

- Faces f₁ and f₂ are adjacent in Γ*. Then we can add a new edge (v_i, v_j) to G such that (v_i, v_j) lies in f_i ∪ f_j and uses a gap to cross the boundary between these faces. This contradicts the maximality of G.
- A vertex c ∈ V_f is incident to both f₁ and f₂. Then two edges e₁, e₂ ∈ E \ E' cross at c. We can replace edge e₁ with a new edge (v_i, v_j) that lies in f₁ ∪ f₂ that crosses edge e₂ at c. The new edge can be inserted into both G and H, contradicting the maximality of H.
- A face $f_0 \in F_0$ is adjacent to both f_1 and f_2 . Then two edges $e_1, e_2 \in E \setminus E'$ are on the common boundary of the adjacent pairs f_1, f_0 and f_0, f_2 . We can replace edge e_1 with a new edge (v_i, v_j) that lies in $f_1 \cup f_0 \cup f_2$ that crosses edge e_2 . The new edge can be inserted into both G and H, contradicting the maximality of H.

Case 2. There is an index $i \in \{1, \ldots, m\}$, such that (v_i, v_{i+1}) is incident to a face in F_j for some $j \neq 0, i, i+1$. Without loss of generality, we may assume that edge (v_1, v_m) is incident to a face in F_j for some 1 < j < m. Note that edge (v_1, v_m) unus be incident to some face in F_j for all $1 \leq j \leq m$; otherwise $v_l v_m$ would be incident to two faces, $f_i \in F_i$ and $f_j \in F_j$, $j \notin \{i-1,i,i+1\}$, that are either adjacent to each other or both adjacent to some face $f_0 \in F_0$; and then we could add a new edge (v_i, v_j) lying in $f_i \cup f_j$ or $f_i \cup f_0$.

It follows that there are faces $f_2 \in F_2$ and $f_3 \in F_3$ that are incident to some point $c \in (v_1, v_2)$; or both are adjacent to some common face $f_0 \in F_0$ that is incident to v_1v_2 .

Consider the face f' of H on the opposite side of (v_i, v_m) , and let F' be the set of faces in the planarization f^* contained in f'. Let $f'' \in F'$ be a face incident to $c \in (v_i, v_m)$ or adjacent to face f_0 . By Lemma 9(2), we may assume that f'' is incident to a vertex v_k on the boundary of the face f'. It is possible that $v_k = v_1$ or $v_k = v_m$.

- If $v_k=v_1$, then we modify $G,\ \Gamma,$ and H as follows: remove the edge that crosses (v_1,w_m) at c, and add a new edge (v_3,v_1) that lies in $f_3 \cup f'$ of $f_3 \cup f_2 \cup f''$ on crosses (v_1,v_m) at a point c. Then relative the edges (v_1,v_m) and (v_1,v_3) by exchanging their initial arcs between v_1 and c, and eliminating the crossing at c. Both (v_1,v_m) and (v_1,v_3) can be added to E', contradicting the maximality of E'.
- If v_k = v_m and v_{m-1} = v₃, we make similar changes replacing edge e with (v₂, v_m).
- Otherwise we similarly modify G, Γ, and H as follows: first replace the edge (v₁, v_m) with two new edges (v₂, v_k) and (v₃, v_k), that lie in f₂ ∪ f'' and f₃ ∪ f'', respectively, and one of them may cross some edge at c. Both (v₂, v_k) and (v₃, v_k) can be added to E', contradicting the maximality of E'.

All cases lead to a contradiction. Therefore, our initial assumption must be dropped, consequently the multigraph H is a triangulation, as claimed. $\hfill \Box$

Lemma. *H* happens to be a triangulation spanning V(G).

We start with a few basic observations.

We start with a few basic observations.

Lemma 8. Graph G = (V, E) is connected.

Proof. Suppose, to the contrary, that G is disconnected. Let $G_1 = (V_1, E_1)$ be one component, and let $G_2 = (V_2, E_2)$, where $V_2 = V \setminus V_1$ and $E_2 = E \setminus E_1$. For i = 1, 2, let Γ_i be the drawing of G_i inherited from G, and let Γ_i^* be its planarization.

Let f_2 be a face in Γ_2^* incident to some vertex $v_2 \in V_2$. Apply a projective transformation to Γ_1 so that the outer face is incident to some vertex $v_1 \in V_1$; followed by an affine transformation that maps Γ_1 into the interior of face f_2 . Now we can add a new edge (v_1, v_2) , contradicting the maximality of G.

Since G is connected, every face in the planarization Γ^* of Γ has a connected boundary. The boundary walk of a face f is a closed walk (a_1, a_2, \ldots, a_m) in Γ^* such that f lies on the left hand side of each edge (a_i, a_{i+1}) along the walk; and every two consecutive edges of the walk, (a_{i-1}, a_i) and (a_i, a_{i+1}) , are also consecutive in the counterclockwise rotation of all edges incident to a_i . Let F_0 denote the set of faces in the planarization Γ^* that are not incident to any vertex in V.

Lemma 9. If $f \in F_0$, then the boundary walk of f is

a simple cycle (i.e., has no repeated vertices) with at least 3 vertices;
disjoint from the boundary walk of any other face in F₀.

Proof. 1. Let $f \in F_0$, and let $w = (a_1, a_2, \ldots, a_\ell)$ be its boundary walk for some $\ell \geq 3$. Let $C_f = \{a_1, \ldots, a_\ell\}$ be the set of vertices in w; and let $E_f \subset E$ be the set of edges in G that contain some edge of w. It suffices to show that $|C_f| = \ell$, and then w has no repeated vertices, hence it is a simple cycle.

Suppose, to the contrary, that the vertices in *w* are not distinct. Since $f \in F_0$, all vertices in *w* are crossings in the drawing Γ , consequently they all have degree 4 in the planarization Γ^* . If $a_i = a_j$, $i \neq j$, then a_i and a_j cannot be consecutive vertices in *w*, and two pairs of edges from (a_{i-1}, a_j) , (a_i, a_{i+1}) , (a_{j-1}, a_j) , (a_j, a_{j+1}) are part of the same edge in E. If $|C_f| = \ell - k$, for some $k \in \mathbb{N}$, then $|E_f| \leq \ell - 2k$. This implies $|E_f| < |C_f|$. That is, the edges in E_f are involved in more than $|E_f|$ crossings, contradicting the assumption that Γ is a 1-gap-planar drawing.

2. Let $f_1, f_2 \in F_0$ be two faces, with boundary walks $w_1 = (a_1, \ldots, a_\ell)$ and $w_2 = (b_1, \ldots, b_{\ell'})$. Both w_1 and w_2 are simple cycles by part 1. For i = 1, 2, let C_i be the set of vertices in w_i , and $E_i \subseteq E$ the set of edges of G that contain the edges of the walk w_i .

Note that w_1 and w_2 cannot share two consecutive edges, say (a_{i-1}, a_i) and (a_i, a_{i+1}) , since the middle vertex a_i has degree 4 in I^{-*} . When w_i and w_2 have a common edge, say $(a_i, a_{i+1}) = (b_{i+1}, b_j)$, then three pairs of edges from $(a_{i-1}, a_i), (a_i, a_{i+1}), (a_{i+1}, a_{i+2}), (b_{j-1}, b_j), (b_j, b_{j+1}) (b_{j+1}, b_{j+2})$ are part of the same edge in E. When w_i and w_2 have a common vertex $a_i = b_j$ but no common edge incident to $a_i = b_j$, then two pairs of edges from $(a_{i-1}, a_i),$ $(a_i, a_{i+1}), (b_{j-1}, b_j), (b_j, b_{j+1})$ are part of the same edge in E. This implies $|E_1 \cup E_2| < |C_1 \cup C_2|$. That is, the edges in $E_1 \cup E_2$ are involved in more than $E_1 \cup E_2| < |C_1 \cup C_2|$. That is, the edges in $E_1 \cup E_2$ are involved in more than $C_1 \cup C_2|$.

Lemma 10. Graph H = (V, E') is connected.

Proof. Suppose, to the contrary, that H is disconnected. Let $H_1 = (V_1, E'_1)$ be one component, and let $H_2 = (V_2, E'_2)$, where $V_2 = V \setminus V_1$ and $E'_2 = E' \setminus E'_1$.

Consider the faces in the planarization Γ^* of Γ . Notice that there is no face in Γ^* incident to a vertex $v_i \in V_1$ and a vertex $v_2 \in V_2$, otherwise we could either add a new edge (v_1, v_2) (contradicting the maximality of G), or redraw an existing the edge (v_1, v_2) to pass through the interior of this face, contradicting the maximality of E'.

Consequently, we can partition the faces in I^* into three categories: For i = 1, 2, let F_i be the set of faces incident to a vertex in V_i , and let F_0 be the set of faces incident to neither V_1 nor V_2 . By Lemma 9, the region obtained by removing all faces in F_0 (i.e., $\mathbb{R}^2 \setminus \bigcup_{f \in F_1}$) is connected. Consequently, there exist some faces $f_1 \in F_1$ and $f_2 \in F_2$ that have a common edge in I^* . Let $v_1 \in V_1$ and $v_2 \in V_2$ be incident to $f_1 \in F_1$ and $f_2 \in F_2$. Let $e \in E$ be the edge on the common boundary of f_1 and f_2 , and denote its endpoints by $a, b \in V$. We consider three possible edges (some of which may be homotopic to an

to consider antice possible coges (since or which may be nonnecepte to an existing edge in G): let $e_0 = (v_1, v_2)$ such that it lies in $f_1 = f_2$; let $e_1 = (v_1, a)$ (resp., $e_2 = (v_1, b)$) such that it starts in f_1 and follow edge e from f_1 to its endpoint a (resp., b).

- If $e \notin E'$, then replace edge e = (a, b) by a new edge $e_0 = (v_1, v_2)$ in G, and add this new edge to H. This modification contradicts the assumption that H has the minimum number of components.
- − Assume e ∈ E'. Note that e₁ and e₂ form a path between a and b_c consequently at most one of these edges may be present in G (as a homotopic copy), otherwise we could modify E' by replacing e with these edges, contradicting the maximality of E'. Now we can increase E by replacing e with e₁ or e₂ (whichever is not already present), contradicting the choice of H.

Both cases lead to a contradiction.

In the proof of Lemma 1, we shall use Sperner's Lemma [37], a well-known discrete analogue of Brouwer's fixed point theorem.

Lemma 11. (Sperner [37]) Let K be a geometric simplicial complex in the plane, where the union of faces is homeomorphic to a disk. Assume that each vertex is assigned a color from the set $\{1, 2, 3\}$ such that three vertices $v_1, v_2, v_3 \in$ ∂K are colored 1, 2, and 3, respectively, and for any pair $i, j \in \{1, 2, 3\}$, the vertices on the path between v_i and v_j along ∂K that does not contain the 3rd vertex are colored with $\{i, j\}$. Then K contains a triangle whose vertices have all three different colors.

We are now ready to prove Lemma 1.

Lemma 1. The multigraph H is a triangulation. That is, a plane multi-graph in which every face is bounded by a walk with three vertices and three edges.

Proof. We need to show that the multigraph H is a triangulation. Suppose, to the contrary, that H is not a triangulation. Then H has a face f whose boundary walk $w = (v_1, v_2, \ldots, v_m)$ has more than three vertices $(m \ge 4)$. To simplify notation, we assume that w is a simple cycle; this assumption is not essential for the proof.

Let P_f be the subgraph of Γ^* formed by all edges and vertices lying in the interior or on the boundary of f; let V_f denote the set of vertices of P_f (it consists of v_1, \ldots, v_m and all crossings in the interior or on the boundary of f; and let F denote the set of faces of Γ^* that lie in f. Let $F_0 \subseteq F$ be the set of faces that are not incident to any vertex; and for $i = 1, \ldots, m$, let $F_i \subseteq F$ be the set of faces incident to v_i .

Note that a face in F cannot be incident to two nonconsecutive vertices v_i and $v_i, j \notin \{i-1, i, i+1\}$, otherwise we could add a new edge v_{ij} , contradicting the maximality of G. A vertex $c \in V_f$ cannot be incident to two faces $f_1 \in F_i$ and $f_2 \in F_j$ such that $j \notin \{i-1, i, i+1\}$, otherwise two edges $e_1, e_2 \in E \setminus E'$ cross at c, and we can replace edge e_1 with a new edge $v_i v_j$ that lies in $f_1 \cup f_2$ that uses one gap to cross edge e_2 —the new edge can be instead into E', contradicting the maximality of H.

We distinguish two cases

Case 1. For every $i \in \{1, ..., m\}$, the edge (u, v_{t+1}) is incident to faces in $F_0 \cup F_i \cup F_{i+1}$ only. We use Sperner's Lemma [37] for a triangulation K of the dual graph on the faces $F_1 \cup ... \cup F_m$, that we define here. We first create the standard dual graph of all faces in F: The nodes correspond to the faces in F_i and two nodes are adjacent if the corresponding faces are adjacent in T^* . We then triangulate the standard dual graph as follows. If a crossing $c \in V_f$ is incident to four faces in F, then the adjacency graph forms a 4-cycle in the standard dual. By Lemma 9(2), at least three of those faces are in $F_1 \setminus F_0$, but that the faces in F_0 still form an independent set by Lemma 9(2). Finally, remove all nodes corresponding to F_0 , and triangulate the chain of adjacent nodes arbitrarily to obtain a triangulate the union of faces is homeomorphic to a disk.

We now define a 3-coloring of K (the coloring need not be proper). Assign color 1 to all faces in F₁. For i = 2, ..., m, assign color 2 to all faces in F₁\ $\bigcup_{j < i} F_j$ if i is even, and color 3 if i is odd.

By Sperner's Lemma, K has a triangle whose nodes have all three different colors, say $f_1 \in F_i$, $f_2 \in F_j$, and $f_3 \in F_k$. Without loss of generality, assume

that $j \notin \{i-1,i+1\}.$ We add a new edge $(v_i,v_j),$ as follows. There are three cases depending on how the edge f_if_j in K was created:

- Faces f₁ and f₂ are adjacent in Γ*. Then we can add a new edge (v_i, v_j) to G such that (v_i, v_j) lies in f_i ∪ f_j and uses a gap to cross the boundary between these faces. This contradicts the maximality of G.
- A vertex c ∈ V_f is incident to both f₁ and f₂. Then two edges e₁, e₂ ∈ E \ E' cross at c. We can replace edge e₁ with a new edge (v_i, v_j) that lies in f₁ ∪ f₂ that crosses edge e₂ at c. The new edge can be inserted into both G and H, contradicting the maximality of H.
- A face $f_0 \in F_0$ is adjacent to both f_1 and f_2 . Then two edges $e_1, e_2 \in E \setminus E'$ are on the common boundary of the adjacent pairs f_1, f_0 and f_0, f_2 . We can replace edge e_1 with a new edge (v_i, v_j) that lies in $f_1 \cup f_0 \cup f_2$ that crosses edge e_2 . The new edge can be inserted into both G and H, contradicting the maximality of H.

Case 2. There is an index $i \in \{1, \ldots, m\}$, such that (v_i, v_{i+1}) is incident to a face in F_j for some $j \neq 0, i, i+1$. Without loss of generality, we may assume that edge (v_1, v_m) is incident to a face in F_j for some 1 < j < m. Note that edge (v_1, v_m) must be incident to some face in F_j for all $1 \leq j \leq m$; otherwise $v_l v_m$ would be incident to two faces, $f_l \in F_l$ and $f_j \in F_j, j \notin \{i-1,i,i+1\}$, that are either adjacent to each other or both adjacent to some face $f_0 \in F_0$; and then we could ad a new edge (v_i, v_j) lying in $f_l \cup f_j$ or $f_l \cup f_0 < f_j$.

It follows that there are faces $f_2 \in F_2$ and $f_3 \in F_3$ that are incident to some point $c \in (v_1, v_2)$; or both are adjacent to some common face $f_0 \in F_0$ that is incident to v_1v_2 .

Consider the face f' of H on the opposite side of (v_i, v_m) , and let F' be the set of faces in the planarization f^* contained in f'. Let $f'' \in F'$ be a face incident to $c \in (v_i, v_m)$ or adjacent to face f_0 . By Lemma 9(2), we may assume that f'' is incident to a vertex v_k on the boundary of the face f'. It is possible that $v_k = v_1$ or $v_k = v_m$.

- If $v_k=v_1$, then we modify $G,\ \Gamma,$ and H as follows: remove the edge that crosses (v_1, v_m) at c, and add a new edge (v_3, v_1) that lies in $f_3 \cup f'$ of $f_3 \cup f_2 \cup f''$ on crosses (v_1, v_m) at a point c. Then redraw the edges (v_1, v_m) and (v_1, v_2) by exchanging their initial arcs between v_1 and c, and eliminating the erossing at c. Both (v_1, v_m) and (v_1, v_3) can be added to E', contradicting the maximality of E'.
- If $v_k = v_m$ and $v_{m-1} = v_3$, we make similar changes replacing edge e with (v_2, v_m) .

Otherwise we similarly modify G, Γ, and H as follows: first replace the edge (v₁, v_m) with two new edges (v₂, v_k) and (v₃, v_k), that lie in f₂ ∪ f'' and f₃ ∪ f'', respectively, and one of them may cross some edge at c. Both (v₂, v_k) and (v₃, v_k) can be added to E', contradicting the maximality of E'.

All cases lead to a contradiction. Therefore, our initial assumption must be dropped, consequently the multigraph H is a triangulation, as claimed.

All cases lead to a contradiction. Therefore, our initial assumption must be dropped, consequently the multigraph H is a triangulation, as claimed.

Outline

- 1. Density of *k*-gap planar graphs
- 2. Complete (bipartite) graphs
- 3. Complexity of recognizing 1-gap planar graphs
- 4. Relation to other graph classes

Complete Graphs

Theorem.

The complete graph K_n is 1-gap planar if and only if $n \le 8$.

Proof. $cr(K_{10}) > 45 \Rightarrow not 1$ -gap planar

But $cr(K_9) = 36 = |E(K_9)|...$

Complete Graphs

Theorem.

The complete graph K_n is 1-gap planar if and only if $n \le 8$.

Proof. $cr(K_{10}) > 45 \Rightarrow not 1-gap planar$

But $cr(K_9) = 36 = |E(K_9)|...$

Assume Γ is a 1-gap planar drawing of K_9 .

Consider planarization Γ^* of Γ :

- $|V(\Gamma^*)| = 9 + 36 = 45, |E(\Gamma^*)| = (9 \cdot 8 + 36 \cdot 4)/2 = 108$
- $\Rightarrow \Gamma^*$ has 65 faces.

Complete Graphs

Theorem.

The complete graph K_n is 1-gap planar if and only if $n \le 8$.

Proof. $cr(K_{10}) > 45 \Rightarrow not 1-gap planar$

But $cr(K_9) = 36 = |E(K_9)|...$

Assume Γ is a 1-gap planar drawing of K_9 .

Consider planarization Γ^* of Γ :

- $|V(\Gamma^*)| = 9 + 36 = 45, |E(\Gamma^*)| = (9 \cdot 8 + 36 \cdot 4)/2 = 108$
- $\Rightarrow \Gamma^*$ has 65 faces.

Two real vertices u and v share a face in Γ^* :

- Each real vertex is incident to 8 faces, but there are less than $9 \cdot 8 = 72$ faces.
- Can redraw edge *uv* without crossings.

- K_{3,13}? *K*_{4,9}? *K*_{6,6}?

Outline

- 1. Density of *k*-gap planar graphs
- 2. Complete (bipartite) graphs
- 3. Complexity of recognizing 1-gap planar graphs
- 4. Relation to other graph classes

Theorem. Testing 1-gap planarity is NP-complete.

Theorem. Testing 1-gap planarity is NP-complete. Even with a fixed rotation scheme.

Theorem. Testing 1-gap planarity is NP-complete. Even with a fixed rotation scheme.

Theorem. Testing 1-gap planarity is NP-complete. Even with a fixed rotation scheme.

Theorem. Testing 1-gap planarity is NP-complete. Even with a fixed rotation scheme.

Theorem. Testing 1-gap planarity is NP-complete. Even with a fixed rotation scheme.

Theorem. Testing 1-gap planarity is NP-complete. Even with a fixed rotation scheme.

Reduction from 3-PARTITION:

Given $a_1 \ldots, a_{3m}$ form triples whose sum is *B*?

Reduction from 3-PARTITION:

Given $a_1 \ldots, a_{3m}$ form triples whose sum is *B*?

Reduction from 3-PARTITION:

Given $a_1 \ldots, a_{3m}$ form triples whose sum is *B*?

B crossing pairs

Reduction from 3-PARTITION:

Given $a_1 \ldots, a_{3m}$ form triples whose sum is *B*?

B crossing pairs

- Route *m* paths of length $(3m 3) \cdot B + B$
- Each path has to pick up *a_i*'s summing to (at most) *B*.

Outline

- 1. Density of *k*-gap planar graphs
- 2. Complete (bipartite) graphs
- 3. Complexity of recognizing 1-gap planar graphs
- 4. Relation to other graph classes

Relation to other Graph Classes

Theorem. For every $k \ge 1$ the following holds. (2k)-PLANAR $\subsetneq k$ -GAP-PLANAR $\subsetneq (2k + 2)$ -QUASIPLANAR

Relation to other Graph Classes

Theorem. For every $k \ge 1$ the following holds. (2k)-PLANAR $\subsetneq k$ -GAP-PLANAR $\subsetneq (2k + 2)$ -QUASIPLANAR

k-GAP-PLANAR $\subseteq (2k + 2)$ -QUASIPLANAR:

• drawing Γ is q-quasiplanar \Leftrightarrow no subset of q edges has

 $\binom{q}{2} = q \cdot (q-1)/2$ crossings

• Drawing Γ is k-gap \Rightarrow any q edges induce $\leq k \cdot q$ crossings

Relation to other Graph Classes

Theorem. For every $k \ge 1$ the following holds. (2k)-PLANAR $\subsetneq k$ -GAP-PLANAR $\subsetneq (2k + 2)$ -QUASIPLANAR

k-GAP-PLANAR $\subseteq (2k + 2)$ -QUASIPLANAR:

• drawing Γ is q-quasiplanar \Leftrightarrow no subset of q edges has

 $\binom{q}{2} = q \cdot (q-1)/2$ crossings

- Drawing Γ is k-gap \Rightarrow any q edges induce $\leq k \cdot q$ crossings
- \Rightarrow k-gap planar drawing is q-quasiplanar if (q 1)/2 > k, i.e., q > 2k + 1.

Relation to Quasiplanarity

Lemma.

For every $k \ge 1$ there exists a graph that is (3-)quasiplanar but not k-gap planar.

Start with $K_{3,3}$:

• Replace each O \Box by \bigcirc 19k times

• Resulting graph *G* is quasiplanar

Relation to Quasiplanarity

Lemma.

For every $k \ge 1$ there exists a graph that is (3-)quasiplanar but not k-gap planar.

Start with $K_{3,3}$:

• Replace each O \Box by \bigcirc 19k times

- Resulting graph G is quasiplanar
- But not *k*-gap planar:
 - choose one path per edge of $K_{3,3} \rightsquigarrow (19k)^9$ crossings.
 - each crossing counted $(19k)^7$ times.
 - $\Rightarrow \operatorname{cr}(G) > (19k)^2 > 9 \cdot 19 \cdot 2k = |E(G)| \cdot k$

Lemma. Every 2*k*-planar drawing is *k*-gap planar.

Lemma. Every 2*k*-planar drawing is *k*-gap planar.

Lemma. Every 2*k*-planar drawing is *k*-gap planar.

- A' incident to 2k|A'| edges.
- Vertices in *B* have degree $\leq 2k$. $\Rightarrow |B'| \geq |A'|$.

Lemma. Every 2*k*-planar drawing is *k*-gap planar.

- A' incident to 2k|A'| edges.
- Vertices in *B* have degree $\leq 2k$.

 $\Rightarrow |B'| \ge |A'|.$

Hence a *k*-gap assignment exists by Hall's theorem.

Lemma.

For every $k \ge 1$ there exists a 1-gap planar graph that is not k-planar.

Replace each gray edge O by $t = 5(k + 1)^4$ parallel paths of length 2.

Lemma.

For every $k \ge 1$ there exists a 1-gap planar graph that is not k-planar.

- In a *k*-planar drawing, we can pick (*k* + 1) paths for each edge such that paths of different edges do not cross.
- Wheel must be drawn as in the picture.
- Red edge has $\geq k + 1$ crossings.

Gap planarity is a new beyond planarity concept:

- Density: linear, 5n 10 for 1-gap planar
- Complete graphs: up to n 8
- Complexity: NP-hard (even with fixed rotation scheme)
- Interesting relation with *k*-planar graphs:
 - 2k-planar graphs are k-gap planar
 - 1-gap planar graphs are not k-planar for any k

Gap planarity is a new beyond planarity concept:

- Density: linear, 5n 10 for 1-gap planar
- Complete graphs: up to n 8
- Complexity: NP-hard (even with fixed rotation scheme)
- Interesting relation with *k*-planar graphs:
 - 2k-planar graphs are k-gap planar
 - 1-gap planar graphs are not k-planar for any k

Questions:

- Which complete bipartite graphs are 1-gap planar?
- Complexity of outer-*k*-gap-planarity?
- Do 1-gap planar drawings have RAC drawings with few bends?

