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Edge casings:
at each crossing insert a small gap into one of the edges.
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Questions:
e What is the maxium density of k-gap planar graphs?

e Which graphs are k-gap planar? Can we recognize them?

e What is the relation to k-planarity? To k-quasiplanarity?
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Density of k-Gap Planar Graphs

~

Lemma.
Let I be a k-gap planar drawing of G = (V/, E). For any
E' C E,T[E’] contains at most k - |E’| crossings.
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Lemma.
Let I be a k-gap planar drawing of G = (V/, E). For any
E' C E,T[E’] contains at most k - |E’| crossings.

Corollary.

For a k-gap planar graph G with medgesitiscr(G) < k- m.
Theorem.

k-gap planar graphs on n vertices have O(vk - n) edges.
Proof. 3

Crossing lemma: cr(G) € %), i.e.cr(G) > c-m’/n°.

=c-m’/n* <cr(G) < k-m

= m<./c/c-Vk-n -
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Lemma.
Let I be a k-gap planar drawing of G = (V/, E). For any
E' C E,T[E’] contains at most k - |E’| crossings.

Corollary.
For a k-gap planar graph G with medgesitiscr(G) < k- m.

Theorem.
k-gap planar graphs on n vertices have O(vk - n) edges.

Proof.

What are the constants for 1-gap planar?
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Theorem.
A 1-gap planar graph on nvertices has < 5n — 10 edges.
A 1-gap planar graph with 5n — 10 edges exists for all n > 20.
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Possibly nest the construction.




Upper Bounc

Let G be a 1-gap-planar multigraph on n > 3 vertices without
homotopic parallel edges that has maximum number of edges.

e Fix a 1-gap-planar drawing I minimizing crossings.
e Pick maximum H C G with edges pairwise non-crossing.
e Tie breaker: Minimize connected components of H.
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Upper Bounc

Let G be a 1-gap-planar multigraph on n > 3 vertices without
homotopic parallel edges that has maximum number of edges.

e Fix a 1-gap-planar drawing I minimizing crossings.
e Pick maximum H C G with edges pairwise non-crossing.
e Tie breaker: Minimize connected components of H.

If H happens to be a triangulation spanning V(G):

Charge edges
e € E(G)\ E(H) to faces:

e face containing end of e
but no gap

e otherwise choose
uncharged face

= |E(H)|=3n—-06, |[E(G)\ E(H)| <2n—4
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We start with a few basic observations. |

Lemma 8. Graph G = (V,E) is connected.

Proof. Suppose, to the contrary, that G is disconnected. Let Gy = (V4, Ey) be
one component, and let Gy = (V5, E;), where Vo, = V' \ 'V} and E; = E'\ Ey.
For i 1,2, let I; be the drawing of G; inherited from G, and let I} be its
planarization.

Let fa be a face in I'y incident to some vertex v € Va. Apply a projective
transformation to I so that the outer face is incident to some vertex v; € Vi:
followed by an affine transformation that maps I into the interior of face fs.
Now we can add a new edge (vi,v2), contradicting the maximality of G. (]

Since G'is connected, every face in the planarization I'* of I" has a connected
boundary. The boundary walk of a face f is a closed walk (a;,as, ..., ay,)in I'*
such that f lies on the left hand side of each edge (a;,a;4+1) along the walk;
and every two consecutive edges of the walk, (a;—1,a;) and (a;,a;+1), are also
consecutive in the counterclockwise rotation of all edges incident to a;. Let Fy
denote the set of faces in the planarization I'* that are not incident to any vertex
inV.

Lemma 9. If f € Fy, then the boundary walk of f is

1. a simple cycle (i.e., has no repeated vertices) with at least 3 vertices;
2. disjoint from the boundary walk of any other face in Fy.

Proof. 1. Let f € Fy, and let w = (a1, as, ..., ar) be its boundary walk for some
> 3. Let Cy = {ay,..., ag} be the set of vertices in w; and let Ey C E be the
set of edges in G that contain some edge of w. It suffices to show that |Cy| = ¢,
and then w has no repeated vertices, hence it is a simple cycle.

Suppose, to the contrary, that the vertices in w are not distinct. Since f € Fy,
all vertices in w are crossings in the drawing I", consequently they all have
degree 4 in the planarization I'*. If a; = a;, i # j, then a; and a; cannot
be consecutive vertices in w, and two pairs of edges from (ai-1,ai), (ai,ai+1),
(aj-1.a;), (aj,a;+1) are part of the same edge in E. If |Cy| = £ — k, for some
k € N, then |Ef| < ¢ — 2k. This implies |Ef| < |Cy|. That is, the edges in Ey
are involved in more than |Ey| crossings, contradicting the assumption that I

is a 1-gap-planar drawing.
2. Let fi, fo € Fy be two faces, with boundary walks w; = (ay,..., ag) and
wy = (by,...,be). Both wy and wy are simple cycles by part 1. For i = 1,2, let
C; be the set of vertices in w;, and E; C E the set of edges of G that contain
the edges of the walk w;.
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k € N, then |Ef| < ¢ — 2k. This implies |Ef| < |Cy|. That is, the edges in Ey
are involved in more than |Ey| crossings, contradicting the assumption that I
is a 1-gap-planar drawing.

2. Let f,f> € Fy be two faces, with boundary walks w; = (ay, ag) and
wy = (by ,ber). Both wy and ws are simple cycles by part 1. For i ,2, let
C; be the set of vertices in w;, and E; C E the set of edges of G that contain
the edges of the walk w;.

J e e (1 tTat w; and w, cannot share two consecutive edges, say (a;_1,a;) and

(@i, aiy1), since the middle vertex a; has degree 4 in I'*. When w; and w;
have a common edge, say (a;, ;1) = (bj+1,b;), then three pairs of edges from
(ai—1,a:), (ai,aiv1), (iy1,aic2), (bj—1,b5), (bj.bjs1) (bjp1,bjs2) are part of
the same edge in E. When w; and wy have a common vertex a; = b; but
no common edge incident to a; = b;, then two pairs of edges from (a;_1,a;),
(@i aiy1), (bj—1.b;), (bj,bjs1) are part of the same edge in E. This implies
|Ey U Es| < |Cy U Csl. That is, the edges in Ey U Es are involved in more than
|Ey U . contradicting the assumption that I is l-gap-planar. O

|
Lemma 10. Graph H = (V, E') is connected.

Proof. Suppose, to the contrary, that H is disconnected. Let Hy = (V1, E}) be
one component, and let Hy = (V3, E}), where V, = V' \ V; and E} = E'\ E].

Consider the faces in the planarization I'* of I". Notice that there is no face
in I'* incident to a vertex v; € V; and a vertex vy, € Va, otherwise we could
cither add a new edge (v;,v2) (contradicting the maximality of ), or redraw an
existing the edge (v1,vs) to pass through the interior of this face, contradicting
the maximality of E’.

Consequently, we can partition the faces in I'* into three categories: For
i =1,2, let F; be the set of faces incident to a vertex in V;; and let Fy be the
set of faces incident to neither Vi nor V5. By Lemma 9, the region obtained by
removing all faces in Fy (... R?\U.p, ) is connected. Consequently, there exist
some faces fi € Fy and f, € F5 that have a common edge in I'*. Let v; € V)
and vy € V3 be incident to f; € Fy and fy € Fy. Let € € E be the edge on the
common boundary of f; and f5, and denote its endpoints by a,b € V.

We consider three possible edges (some of which may be homotopic to an
existing edge in G): let eo = (v1,v2) such that it lies in f, U fo; let ey = (v1,a)
(resp., eo = (v1,b)) such that it starts in f; and follow edge e from f; to its
endpoint a (resp., b).

— If e ¢ E’, then replace edge e = (a.b) by a new edge eg = (v1,v) in G, and
add this new edge to H. This modification contradicts the assumption that
H has the minimum number of components.

— Assume e € E’. Note that e; and e, form a path between a and b, conse-
quently at most one of these edges may be present in G' (as a homotopic
copy), otherwise we could modify E’ by replacing e with these edges, con-
tradicting the maximality of E’. Now we can increase E by replacing e with
€, or ey (whichever is not already present), contradicting the choice of H.

Both cases lead to a contradiction. o
In the proof of Lemma 1, we shall use Sperner’s Lemma [37], a well-known

discrete analogue of Brouwer’s fixed point theorem.

Lemma 11. (Sperner [37]) Let K be a geometric simplicial complex in the

plane, where the union of faces is homeomorphic to a disk. Assume that each

vertex is assigned a color from the set {1,2,3} such that three vertices vy, vy, vs €
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We consider three possible edges (some of which may be homotopic to an
existing edge in G): let eo = (v1,v2) such that it lies in f, U fo; let ey = (v1,a)
(resp., ea = (v1,b)) such that it starts in f; and follow edge e from f; to its
endpoint a (resp., b).

— If e ¢ E’, then replace edge e = (a,b) by a new edge eg = (v1,v2) in G, and
add this new edge to H. This modification contradicts the assumption that
H has the minimum number of components.

— Assume e € E’. Note that e; and e, form a path between a and b, conse-
quently at most one of these edges may be present in G' (as a homotopic
copy), otherwise we could modify E’ by replacing e with these edges, con-
tradicting the maximality of E’. an we can increase E by replacing e with
€, or ey (whichever is not already present), contradicting the choice of H.

Both cases lead to a contradiction. o

In the proof of Lemma 1, we shall use Sperner’s Lemma [37], a well-known
discrete analogue of Brouwer’s fixed point theorem.
Lemma 11. (Sperner [37]) Let K be a geometric simplicial complex in the
plane, where the union of faces is homeomorphic to a disk. Assume that each
vertex is assigned a color from the set {1,2,3} such that three vertices vy, vy, vs €

OK are colored 1, 2, and 3, respectively, and for any pairi, j € {1,2,3}, the ver-
tices on the path between v; and vj along DK that does not contain the 3rd vertexr
are colored with {i,j}. Then K contains a triangle whose vertices have all three
different colors.

We are now ready to prove Lemma 1.

Lemma 1. The multigraph H is a triangulation. That is, a plane multi-graph
in which every face is bounded by a walk with three vertices and three edges.

Proof. We need to show that the multigraph H is a triangulation. Suppose, to the
contrary, that H is not a triangulation. Then H has a face f whose boundary

walk w = (v1,v2,...,v;,) has more than three vertices (m > 4). To simplify
notation, we assume that w is a simple cycle; this assumption is not essential for
the proof.

Let Py be the subgraph of I'* formed by all edges and vertices lying in the
interior or on the boundary of f: let V; denote the set of vertices of Py (it consists
of vy,..., v, and all crossings in the interior or on the boundary of f); and let
F denote the set of faces of I'* that lie in f. Let F; C F' be the set of faces that
are not incident to any vertex; and for i = 1,...,m, let F; C F be the set of
faces incident to v;.

Note that a face in F' cannot be incident to two nonconsecutive vertices v;
and v;, j ¢ {i—1,i,i+1}, otherwise we could add a new edge v;v;, contradicting
the maximality of G. A vertex ¢ € Vi cannot be incident to two faces f; € F; and
f2 € Fj such that j ¢ {i—1,4,i+ 1}, otherwise two edges e}, e € E\ E' cross at
¢, and we can replace edge e; with a new edge v;v; that lies in f; U f; that uses
one gap to cross edge e;—the new edge can be inserted into E’, contradicting
the maximality of H

‘We distinguish two cases.

Case 1. For every i € {1 m}, the edge (vi,v:11) is incident to faces
in F,UF,UF,,, only. We use Sperner’s Lemma [37] for a triangulation K of
the dual graph on the faces Fy U. ..UF,,, that we define here. We first create the
standard dual graph of all faces in he nodes correspond to the faces in F; and
two nodes are adjacent iff the corresponding faces are adjacent in I'*. We then
triangulate the standard dual graph as follows. If a crossing ¢ € Vy is incident to
four faces in F, then the adjacency graph forms a 4-cycle in the standard dual.
By Lemma 9(2), at least three of those faces are in F'\ Fy, and we triangulate the
4-cycle by an arbitrary diagonal between two faces in F\ Fy. Note that the faces
in Fy still form an independent set by Lemma 9(2)). Finally, remove all nodes
corresponding to Fy, and triangulate the chain of adjacent nodes arbitrarily to
obtain a triangulation K. The condition in Case 1 implies that K is a geometric
simplie complex, where the union of faces is homeomorphic to a disk.

We now define a 3-coloring of K (the coloring need not be proper). %»ion
color 1 to all faces in Fy. For 2 m, assign color 2 to all faces in F;\|J
if 7 is even, and color 3 if 7 is odd.

By Sperner’s Lemma, K has a triangle whose nodes have all three different
colors, say fi € Fj, fa € Fj, and f3 € Fj.. Without loss of generality, assume

j<i Fs
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We start with a few basic observations.
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We start with a few basic observations. I

Lemma 8. Graph G = (V,E) is connected.

Proof. Suppose, to the contrary, that G is disconnected. Let Gy = (Vi, E}) be
one component, and let Gy = (V5, E;), where Vo, = V' \ 'V} and E; = E'\ Ey.
For i = 1,2, let I be the drawing of G; inherited from G, and let I'} be its
planarization.

Let fa be a face in I'y incident to some vertex v € Va. Apply a projective
transformation to I so that the outer face is incident to some vertex v; € Vi:
followed by an affine transformation that maps I into the interior of face fs.
Now we can add a new edge (vi,v2), contradicting the maximality of G. O

Since G'is connected, every face in the planarization I'* of I" has a connected
boundary. The boundary walk of a face f is a closed walk (a;,as Ja,,)in I'*
such that f lies on the left hand side of each edge (a;,a;4+1) along the walk;

and every two consecutive edges of the walk, (a;—1,a;) and (a;,a;+1), are also
consecutive in the counterclockwise rotation of all edges incident to a;. Let Fy
denote the set of faces in the planarization I'* that are not incident to any vertex
inV.

Lemma 9. If f € Fy, then the boundary walk of f is

1. a simple cycle (i.e., has no repeated vertices) with at least 3 vertices;
2. disjoint from the boundw"y walk of any other face in Fy.

Proof. 1. Let f € Fy, and let w = (a1, az,...,ar) be its boundary walk for some
£=3.Let Cy = {ay ,ae} be the set of vertices in w; and let Ey C E be the
set of edges in G that contain some edge of w. It suffices to show that |Cy| = ¢,
and then w has no repeated vertices, hence it is a simple cycle.

Suppose, to the contrary, that the vertices in w are not distinct. Since f € Fy,
all vertices in w are crossings in the drawing I", consequently they all have
degree 4 in the planarization I'*. If a; = a;, i # j, then a; and a; cannot
be consecutive vertices in w, and two pairs of edges from (ai-1,ai), (ai,ai+1),
(aj-1.a;), (aj,aj+1) are part of the same edge in E. If |Cy| = £ — k, for some
k €N, then |Ef| < ¢ — 2k. This implies '¢|. That is, the edges in Ef
are involved in more than |Ey| crossings, contradicting the assumption that I
is a 1-gap-planar drawing.

2. Let f,f> € Fy be two faces, with boundary walks w; = (ay,
wy = (by ,ber). Both wy and ws are simple cycles by part 1. For i
C; be the set of vertices in w;, and E; C E the set of edges of G that contain
the edges of the walk w;.

J e e (1 hat 7w, nd u wy (annot :hare two consecutive edges, say (a;_1,a;) and

(@i, aiy1), since the middle vertex a; has degree 4 in I'*. When w; and w;
have a common edge, say (a;, ai+1) = (bj41.b;), then three pairs of edges from
(@i-1.01). (a1,0151), (ais1,152), (bj-1,b;), (bj.bjs1) (bjr,byi2) are part of
the m)!uL edge in E. When w; and wy have a common vertex a; = b; but
no common edge incident to a; = b;, then two pairs of edges from (a;i_1,a;),
(@i aiy1), (bj—1.b;), (bj,bjs1) are part of the same edge in E. This implies
|Ey U Es| < |Cy U Csl. That is, the edges in Ey U Es are involved in more than
|Ey U | crossings, contradicting the assumption that I is 1-gap-planar. O

Lemma 10. Graph H = (V, E') is connected.

Proof. Suppose, to the contrary, that H is disconnected. Let Hy = (V1, E}) be
one component, and let H, = E}), where V, =V \ 'V} and Ej = E'\ Ef.

Consider the faces in the planarization I'* of I". Notice that there is no face
in I'* incident to a vertex v; € V; and a vertex vy, € Va, otherwise we could
either add a new edge (v;,v,) (contradicting the maximality of G), or redraw an
existing the edge (v1,vs) to pass through the interior of this face, contradicting
the maximality of E'.

Consequently, we can partition the faces in I'* into three categories: For
i =1,2, let F; be the set of faces incident to a vertex in V;; and let Fy be the
set of faces incident to neither V; nor V. By Lemma 9, the region obtained by
removing all faces in Fy (... R?\U.p, ) is connected. Consequently, there exist
some faces fi € Fy and f, € F5 that have a common edge in I'*. Let v; € V)
and vy € V5 be incident to f; € Fy and f, € Fy. Let e € E be the edge on the
common boundary of f; and f,, and denote its endpoints by a,b € V

We consider three possible edges (some of which may be homotopic to an
existing edge in G): let eo = (v1,v2) such that it lies in f, U fo; let ey = (v1,a)
(resp., ea = (v1,b)) such that it starts in f; and follow edge e from f; to its
endpoint a (resp., b).

— If e ¢ E’, then replace edge e = (a,b) by a new edge eg = (v1,v2) in G, and
add this new edge to H. This modification contradicts the assumption that
H has the minimum number of components.

— Assume e € E’. Note that e; and e, form a path between a and b, conse-
quently at most one of these edges may be present in G (as a homotopic
copy), otherwise we could modify E’ by replacing e with these edges, con-
tradicting the maximality of E’. an we can increase E by replacing e with
€, or ey (whichever is not already present), contradicting the choice of H.

Both cases lead to a contradiction. o
In the proof of Lemma 1, we shall use Sperner’s Lemma [37], a well-known

discrete analogue of Brouwer’s fixed point theorem.

Lemma 11. (Sperner [37]) Let K be a geometric simplicial complex in the

plane, where the union of faces is homeomorphic to a disk. Assume that each

verter is assigned a color from the set {1,2,3} such that three vertices vy, va, v3 €

OK are colored 1, 2, and 3, respectively, and for any pairi, j € {1,2,3}, the ver-
tices on the path between v; and vj along DK that does not contain the 3rd vertexr
are colored with {i,j}. Then K contains a triangle whose vertices have all three
different colors.

We are now ready to prove Lemma 1.

Lemma 1. The multigraph H is a triangulation. That is, a plane multi-graph
in which every face is bounded by a walk with three vertices and three edges.

Proof. We need to show that the multigraph H is a triangulation. Suppose, to the
contrary, that H is not a triangulation. Then H has a face f whose boundary
walk w = (v1,v2,...,v,) has more than three vertices (m > 4). To simplify
notation, we assume that w is a simple cycle; this assumption is not essential for
the proof.

Let Py be the subgraph of I'* formed by all edges and vertices lying in the
interior or on the boundary of f: let V; denote the set of vertices of Py (it consists
of vy,..., v, and all crossings in the interior or on the boundary of f); and let
F denote the set of faces of I'* that lie in f. Let F; C F' be the set of faces that
and for i = 1, m, let F; C F be the set of

are not incident to any vertex;
faces incident to v;.

Note that a face in F' cannot be incident to two nonconsecutive vertices v;
and vy, j ¢ {i—1,i,i+1}, otherwise we could add a new edge v;v;, contradicting
the maximality of G. A vertex ¢ € Vi cannot be incident to two faces f; € F; and
f2 € Fj such that j ¢ {i—1,4,i+ 1}, otherwise two edges e}, e € E\ E' cross at
¢, and we can replace edge e; with a new edge v;v; that lies in f; U f; that uses
one gap to cross edge e;—the new edge can be inserted into E’, contradicting
the maximality of H.

‘We distinguish two cases.

Case 1. For every i € {1,....,m}, the edge (v;,v;1) is incident to faces
in F,UF,UF,,, only. We use Sperner’s Lemma [37] for a triangulation K of
the dual graph on the faces Fy U...UF,,, that we define here. We first create the
standard dual graph of all faces in F': The nodes correspond to the faces in F'; and
two nodes are adjacent iff the corresponding faces are adjacent in I'*. We then
triangulate the standard dual graph as follows. If a crossing ¢ € Vy is incident to
four faces in F', then the adjacency graph forms a 4-cycle in the standard dual.
By Lemma 9(2), at least three of those faces are in F'\ Fy, and we triangulate the
e by an arbitrary diagonal between two faces in F'\ Fy. Note that the faces
in Fy still form an independent set by Lemma 9(2)). Finally, remove all nodes
corresponding to Fy, and triangulate the chain of adjacent nodes arbitrarily to

obtain a triangulation K. The condition in Case 1 implies that K is a geometric
simplie complex, where the union of faces is homeomorphic to a disk.

We now define a 3-coloring of K (the coloring need not be proper). %»ion
color 1 to all faces in Fy. For 2 m, assign color 2 to all faces in F;\|J
if i is even, and color 3 if 7 is odd.

By Sperner’s Lemma, K has a triangle whose nodes have all three different
colors, say fi € Fj, fa € Fj, and f3 € Fj.. Without loss of generality, assume

j<i F;

that j ¢ {i — 1,i + 1}. We add a new edge (v;,v;), as follows. There are three
cases depending on how the edge f;f; in K was created:

— Faces f, and f, are adjacent in I'*. Then we can add a new edge (v;,v;)
to G such that (v;,v;) lies in f; U f; and uses a gap to cross the boundary
between these faces. This contradicts the maximality of G.

— A vertex ¢ € Vy is incident to both f; and f,. Then two edges e;,e2 € E\E’
cross at c. We can replace edge e, with a new edge (v;, v;) that lies in fy U fa
that crosses edge e, at ¢. The new edge can be inserted into both G and H,
contradicting the maximality of H.

— A face fo € Fy is adjacent to both f; and f,. Then two edges ey, e, € E\ E’
are on the common boundary of the adjacent pairs f1, fo and fo, f2. We can
replace edge e; with a new edge (v;,v;) that lies in f; U fo U f> that crosses
edge e;. The new edge can be inserted into both G and H, contradicting the
maximality of H.

Case 2. There is an index i € {1,...,m}, such that (v;,v;,,) is incident to
a face in Fj for some j # 0,,i+ 1. Without loss of generality, we may assume
that edge (v1,vy,) is incident to a face in F; for some 1 < j < m. Note that edge
(v1, V) must be incident to some face in Fj for all 1 < j < m; otherwise vivy,
would be incident to two faces, f; € F; and f; € Fj, j ¢ {i —1.i.i+ 1}, that are
either adjacent to each other or both adjacent to some face fo € Fo; and then
we could add a new edge (v;,v;) lying in f; U f; or f; U fo U fj.

It follows that there are faces fo € F5 and f3 € F3 that are incident to some
point ¢ € (v1,v2); or both are adjacent to some common face fo € Fy that is
incident to vqvs.

Consider the face f' of H on the opposite side of (v1,v,), and let F’ be
the set of faces in the planarization I'* contained in f’. Let f” € F’ be a face
incident to ¢ € (vy,vy,) or adjacent to face fo. By Lemma 9(2), we may assume
that f” is incident to a vertex vy on the boundary of the face f’. It is possible
that v = vy or Vg = V.

—If o =
Cros:

1, then we modify G, I', and H as follows: remove the edge that
(v1,0m) at c, and add a new edge (vs,v;) that lies in fz U f” or
f3U foU f”, and crosses (v1,vy,) at a point c. Then redraw the edges (vy, vm)
and (vq,v3) by exchanging their initial arcs between v; and ¢, and eliminating
the crossing at ¢. Both (vy,v,,) and (v, v3) can be added to E’, contradicting
the maximality of E’.
— If v = vy and v,,_; = vs, we make similar changes replacing edge e with
(va,
Otherwise we similarly modify G, I, and H as follows: first replace the
edge (vy,vy,) with two new edges (va,vy) and (vs,v), that lie in fo U f”
and f3 U f”, respectively, and one of them may cross some edge at c. Both
(v2,vx) and (vs, vx) can be added to E, contradicting the maximality of E.

All cases lead to a contradiction. Therefore, our initial assumption must be
dropped, consequently the multigraph H is

a triangulation, as claimed. a
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We start with a few basic observations. I

Lemma 8. Graph G = (V,E) is connected.

Proof. Suppose, to the contrary, that G is disconnected. Let Gy = (V4, Ey) be
one component, and let Gy Vs, E,), where Vo = V\ V) and E; = E'\ Ey.
For i = 1,2, let I'; be the drawing of G; inherited from G, and let I'} be its
planarization.

Let fa be a face in I'y incident to some vertex v € Va. Apply a projective
transformation to I so that the outer face is incident to some vertex v; € Vi:
followed by an affine transformation that maps I into the interior of face fs.
Now we can add a new edge (vi,v2), contradicting the maximality of G. (]

Since G'is connected, every face in the planarization I'* of I" has a connected
boundary. The boundary walk of a face f is a closed walk (a;,as Ja,,) in I'*
such that f lies on the left hand side of each edge (a;,a;4+1) along the walk;
and every two consecutive edges of the walk, (a;—1,a;) and (a;,a;+1), are also
consecutive in the counterclockwise rotation of all edges incident to a;. Let Fy
denote the set of faces in the planarization I'* that are not incident to any vertex
inV.

Lemma 9. If f € Fy, then the boundary walk of f is

1. a simple cycle (i.e., has no repeated vertices) with at least 3 vertices;
2. disjoint from the boundary walk of any other face in Fy.

Proof. 1. Let f € Fy, and let w = (a1, as, ..., ar) be its boundary walk for some
0> 3. Let Cp = {ay ,ae} be the set of vertices in w; and let Ey C E be the
set of edges in G that contain some edge of w. It suffices to show that |Cy| = ¢,
and then w has no repeated vertices, hence it is a simple cycle.

Suppose, to the contrary, that the vertices in w are not distinct. Since f € Fy,
all vertices in w are crossings in the drawing I", consequently they all have
degree 4 in the planarization I'*. If a; = a;, i # j, then a; and a; cannot
be consecutive vertices in w, and two pairs of edges from (ai-1,ai), (ai,ai+1),
(aj—1,a;), (aj,aj+1) are part of the same edge in E. If |Cy| = £ — k, for some
k € N, then |Ef| < ¢ — 2k. This implies |Ef| < |Cy|. That is, the edges in Ey
are involved in more than |Ey| crossings, contradicting the assumption that I
is a 1-gap-planar drawing.

2. Let f,f> € Fy be two faces, with boundary walks w; = (ay, ag) and
wa = (by ,ber). Both wy and ws are simple cycles by part 1. For i ,2, let
C; be the set of vertices in w;, and E; C E the set of edges of G that contain
the edges of the walk w;.

e == o= = o= = = = NG (Tat 7w, and w; cannot share two consecutive edges,

ay (ai—1,a;) and
(@i, aiy1), since the middle vertex a; has degree 4 in I'*. When w; and w;
have a common edge, say (a;, ;1) = (bj+1,b;), then three pairs of edges from
(ai—1,a:), (ai,aiv1), (iy1,aic2), (bj—1,b5), (bj.bjs1) (bjp1,bjs2) are part of
the same edge in E. When w; and wy have a common vertex a; = b; but
no common edge incident to a; = b;, then two pairs of edges from (a;_1,a;),
(ai,aiy1), (bj—1,b;), (bj,bjs1) are part of the same edge in E. This implies
1248] < |Cy UC,|. That is, the edges in Ey U E; are involved in more than
|Ey U . contradicting the assumption that I is l-gap-planar. O

|
Lemma 10. Graph H = (V, E') is connected.

Proof. Suppose, to the contrary, that H is disconnected. Let Hy = (V1, E}) be
one component, and let Hy = (V3, E}), where V, = V' \ V; and E} = E'\ E].

Consider the faces in the planarization I'* of I". Notice that there is no face
in I'* incident to a vertex v; € V; and a vertex vy, € Va, otherwise we could
cither add a new edge (v;,v2) (contradicting the maximality of ), or redraw an
existing the edge (v1,vs) to pass through the interior of this face, contradicting
the maximality of E’.

Consequently, we can partition the faces in I'* into three categories: For
i =1,2, let F; be the set of faces incident to a vertex in V;; and let Fy be the
set of faces incident to neither Vi nor V5. By Lemma 9, the region obtained by
removing all faces in Fy (... R?\U.p, ) is connected. Consequently, there exist
some faces f € Fy and f, € F, that have a common edge in I'*. Let v; € V;
and vy € V3 be incident to f; € Fy and fy € Fy. Let € € E be the edge on the
common boundary of f; and f5, and denote its endpoints by a,b € V.

We consider three possible edges (some of which may be homotopic to an
existing edge in G): let eo = (v1,v2) such that it lies in f, U fo; let ey = (v1,a)
(resp., eo = (v1,b)) such that it starts in f; and follow edge e from f; to its
endpoint a (resp., b).

— If e ¢ E’, then replace edge e = (a.b) by a new edge eg = (v1,v) in G, and
add this new edge to H. This modification contradicts the assumption that
H has the minimum number of components.

— Assume e € E’. Note that e; and e, form a path between a and b, conse-
quently at most one of these edges may be present in G' (as a homotopic
copy), otherwise we could modify E’ by replacing e with these edges, con-
tradicting the maximality of E’. Now we can increase E by replacing e with
€, or ey (whichever is not already present), contradicting the choice of H.

Both cases lead to a contradiction. o

In the proof of Lemma 1, we shall use Sperner’s Lemma [37], a well-known

discrete analogue of Brouwer’s fixed point theorem.

Lemma 11. (Sperner [37]) Let K be a geometric simplicial complex in the
plane, where the union of faces is homeomorphic to a disk. Assume that each
vertex is assigned a color from the set {1,2,3} such that three vertices vy, vy, vs €

OK are colored 1, 2, and 3, respectively, and for any pairi, j € {1,2,3}, the ver-
tices on the path between v; and v; along OK that does not contain the 3rd vertex
are colored with {i,j}. Then K contains a triangle whose vertices have all three
different colors.

We are now ready to prove Lemma 1.

Lemma 1. The multigraph H is a triangulation. That is, a plane multi-graph
in which every face is bounded by a walk with three vertices and three edges.

Proof. We need to show that the multigraph H is a triangulation. Suppose, to the
contrary, that H is not a triangulation. Then H has a face f whose boundary
walk w = (v1,vs,...,v,n) has more than three vertices (m > 4). To simplify
notation, we assume that w i
the proof.

Let Py be the subgraph of I'* formed by all edges and vertices lying in the
interior or on the boundary of f:let V; denote the set of vertices of Py (it consists
of vy,.... v, and all crossings in the interior or on the boundary of f); and let
F denote the set of faces of I'* that lie in f. Let F; C F' be the set of faces that
.m, let F; C F be the set of

simple cycle; this assumption is not essential for

are not incident to any vertex; and for i = 1,
faces incident to v;.

Note that a face in F cannot be incident to two nonconsecutive vertices v;
and vj, j ¢ {i—1,i,i+1}, otherwise we could add a new edge v;v;, contradicting
the maximality of G. A vertex ¢ s cannot be incident to two faces fi € F; and
f2 € Fj such that j ¢ {i—1,4,i+ 1}, otherwise two edges e}, e3 € E'\ E’ cross at
¢, and we can replace edge e; with a new edge v;v; that lies in f; U f; that uses
one gap to cross edge e;—the new edge can be inserted into E’, contradicting
the maximality of H.

We distinguish two cases.

Case 1. For every i € {1,...,m}, the edge (v;,v;;1) is incident to faces
in F,UF,UF,,, only. We use Sperner’s Lemma [37] for a triangulation K of
the dual graph on the faces Fy U. ..UF,,, that we define here. We first create the
standard dual graph of all faces in he nodes correspond to the fa in F; and
two nodes are adjacent iff the corresponding faces are adjacent in I'*. We then
triangulate the standard dual graph as follows. If a crossing ¢ € Vy is incident to
four faces in F, then the adjacency graph forms a 4-cycle in the standard dual.
By Lemma 9(2), at least three of those faces are in F'\ Fy, and we triangulate the
cle by an arbitrary diagonal between two faces in F'\ Fy. Note that the faces
in Fy still form an independent set by Lemma 9(2)). Finally, remove all nodes
corresponding to Fy, and triangulate the chain of adjacent nodes arbitrarily to
obtain a triangulation K. The condition in Case 1 implies that K is a geometric
simplie complex, where the union of faces is homeomorphic to a disk.

We now define a 3-coloring of K (the coloring need not be proper). Assign
color 1 to all faces in Fy. For 2 m, assign color 2 to all faces in F; \UJ/, F;
if 7 is even, and color 3 if 7 is odd.

By Sperner’s Lemma, K has a triangle whose nodes have all three different
colors, say fi € Fy, fa € Fj, and f3 € Fi. Without loss of generality, assume

that j ¢ {i — 1,7 + 1}. We add a new edge (v;,v;), as follows. There are three
cases depending on how the edge f;f; in K was created:

— Faces f) and f, are adjacent in I'*. Then we can add a new edge (v;,v;)
to G such that (v;,v;) lies in f; U f; and uses a gap to cross the boundary
between these faces. This contradicts the maximality of G.

— A vertex ¢ € Vy is incident to both f; and f,. Then two edges e;,e2 € E\E’
cross at c. We can replace edge e, with a new edge (v;, v;) that lies in fy U fa
that crosses edge e, at ¢. The new edge can be inserted into both G and H,
contradicting the maximality of H.

— A face fy € Fy is adjacent to both f; and f,. Then two edges e.e; € E\ E
are on the common boundary of the adjacent pairs f1, fo and fo, f2. We can
replace edge e; with a new edge (v;,v;) that lies in f; U fo U f> that crosses
edge e,. The new edge can be inserted into both G and H, contradicting the
maximality of H.

Case 2. There is an index i € {1,...,m}, such that (v;,v;,,) is incident to
a face in Fj for some j # 0,,i+ 1. Without loss of generality, we may assume
that edge (v, vy, ) is incident to a face in F; for some 1 < j < m. Note that edge
(v1, Upn) must be incident to some face in Fj for all 1 < j < m; otherwise vyvy,
would be incident to two faces, f; € F; and f; € Fj, j  {i —1,4,i+ 1}, that are
either adjacent to each other or both adjacent to some face fo € Fp; and then
we could add a new edge (v;,v;) lying in f; U f; or f; U fo U fj.

It follows that there are faces fo € F5 and f3 € F3 that are incident to some
point ¢ € (v1,v2); or both are adjacent to some common face fo € Fy that is
incident to vqva

Consider the face f' of H on the opposite side of (v1,v,), and let F’ be
the set of faces in the planarization I'* contained in f’. Let f” € F’ be a face
incident to ¢ € (vy,vy,) or adjacent to face fo. By Lemma 9(2), we may assume
that f” is incident to a vertex vy on the boundary of the face f’. It is possible
that vp = vy or vp = v,

— If v, = vy, then we modify G, I, and H as follows: remove the edge that
(v1,v) at ¢, and add a new edge (vs,v;) that lies in f3 U f” or
f3U foU f”, and crosses (v1,v,,) at a point ¢. Then redraw the edges (v1, v,n)
and (v, v3) by exchanging their initial arcs between v; and ¢, and eliminating
the crossing at ¢. Both (v;,v,,) and (v;, v3) can be added to E’, contradicting

crosses

the maximality of E’
If v = vy and vm_1 = v3, we make similar changes replacing edge e with
(v2, vy

— Otherwise we similarly modify G, I', and H as follows: first replace the
edge (vy,vy,) with two new edges (va,vy) and (vs,v), that lie in fo U f”
and f3 U f”, respectively, and one of them may cross some edge at c. Both

(v2, v) and (vs, vg) can be added to E’, contradicting the maximality of E’.

All cases lead to a contradiction. Therefore, our initial assumption must be
dropped, consequently the multigraph H is a triangulation, as claimed. a

All

cases lead to a contradiction. Therefore, our initial

assumption must be dropped, consequently the multigraph H

is a triangulation, as claimed.
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Complete Graphs

Theorem.
The complete graph K, is 1-gap planar if and only if n < 8.

Proof, cr(Kig) > 45 = not 1-gap planar
But cr(Ko) = 36 = |E(Ko)|... Ks

Assume I is a 1-gap planar drawing of Kg. Q

Consider planarization I'* of I':
o V([™)=9+36=45|E(l")=(9-8+36-4)/2 =108
e = [* has 65 faces.

Two real vertices v and v share a face in ['*;
e Each real vertex is incident to 8 faces, but there are less

than 9 - 8 = 72 faces.
e Can redraw edge uv without crossings.
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Complete Bipartite Graphs

K3 12
S

X

LSS

o K3137?
® K479?

o Kop?
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Reduction

Reduction from 3-PARTITION:
Given a;y ..., az, form triples whose sum is B?

B crossing pairs

________~

c:o:ctc}:ctc}:c:{o:c‘c o:o::o:o:: u“"‘ Pl ,:::::mo:c
iy n‘cn‘cWm‘m‘cMm‘m‘u""“ c'm'coW]

!o"o'o"o'omo'o"o'o"o‘m“ i i ,ﬁo‘o,c‘o;o,c,o;o,w o‘m’m'mw

“¢‘,‘,‘:‘,‘,‘:‘,’,‘:‘l‘:‘,’,‘:‘,‘,‘:‘M‘oummm‘ i mmmn‘” .

| NWNWN NWNWN WAL AR

e Route m paths of length (3m —3)- B+ B

e U

e Each path has to pick up a;’s summing to (at most) B.



DWW N =

. Density of k-gap planar graphs
. Complete (bipartite) graphs
. Complexity of recognizing 1-gap planar graphs

Relation to other graph classes

Outline



Relation to other Graph Classes

Theorem.
For every k > 1 the following holds.
(2k)-PLANAR C k-GAP-PLANAR C (2k + 2)-QUASIPLANAR




Relation to other Graph Classes

~\

Theorem.
For every k > 1 the following holds.
(2k)-PLANAR C k-GAP-PLANAR C (2k + 2)-QUASIPLANAR

k-GAP-PLANAR C (2k + 2)-QUASIPLANAR:

e drawing [ is g-quasiplanar < no subset of g edges has

(9) = q- (g —1)/2 crossings
e Drawing I is k-gap = any g edges induce < k - g crossings



Relation to other Graph Classes

~\

Theorem.
For every k > 1 the following holds.
(2k)-PLANAR C k-GAP-PLANAR C (2k + 2)-QUASIPLANAR

k-GAP-PLANAR C (2k + 2)-QUASIPLANAR:

e drawing [ is g-quasiplanar < no subset of g edges has

(9) = q- (g —1)/2 crossings
e Drawing I is k-gap = any g edges induce < k - g crossings

= k-gap planar drawing is g-quasiplanarif (g — 1)/2 > k,
l.e.,, g > 2k + 1.
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Lemma.
For every k > 1 there exists a graph that is (3-)quasiplanar
'but not k-gap planar.

-

Start with K3,3:

e Replace eachO—0 ch@: > 19k times

/

e Resulting graph G is quasiplanar

e But not k-gap planar:

— choose one path per edge of K3 3 ~ (19k)? crossings.
— each crossing counted (19k)’ times.
- = cr(G) > (19k)* > 9-19 -2k = |E(G)| - k
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Relation to k-Planarity

Lemma.
Every 2k-planar drawing is k-gap planar.

A: crossings B: edges (k vertices per edge)

3 k-gap assignment

\ | &

/‘:‘ . ; H has a matching of A into B.

':
A = B = N(A)

e A’incidentto 2k|A’| edges.

e Vertices in B have degree < 2k.
= |B’| > |A’l.

Hence a k-gap assignment exists by Hall’s theorem.
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paths of length 2.
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Lemma.
For every kK > 1 there exists a 1-gap planar graph that is not

 k-planar.

o000 Replace each gray edge
o O by t = 5(k + 1)* parallel
paths of length 2.

e In a k-planar drawing, we can pick (k + 1) paths for each
edge such that paths of different edges do not cross.

e Wheel must be drawn as in the picture.
e Red edge has > k + 1 crossings.
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e Density: linear, 5n — 10 for 1-gap planar
e Complete graphs: upton— 8
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e Interesting relation with k-planar graphs:

— 2k-planar graphs are k-gap planar
— 1-gap planar graphs are not k-planar for any k



Conclusion

Gap planarity is a new beyond planarity concept:
e Density: linear, 5n — 10 for 1-gap planar
e Complete graphs: upton— 8
e Complexity: NP-hard (even with fixed rotation scheme)

e Interesting relation with k-planar graphs:

— 2k-planar graphs are k-gap planar
— 1-gap planar graphs are not k-planar for any k

Questions:
e Which complete bipartite graphs are 1-gap planar?
e Complexity of outer-k-gap-planarity?

e Do 1-gap planar drawings have RAC drawings with few
bends?



